

Superintelligence An Initial Assessment and Trend Analysis

Monday, June 16, 2025 Alexandre Vallotton & Valentin Mulder, Cyber-Defence Campus

From Today's AI to Superintelligence

Feature	Artificial Narrow Intelligence (ANI)	Artificial General Intelligence (AGI)	Artificial Super- intelligence (ASI)
Scope	Single Task	General tasks (human level)	All tasks (beyond human)
Learning adaptability	Minimal	High	Extrem
Consciousness	None	Possibly	Possibly
Current Existence	Already here	Not yet (R&D)	Theoretical
Control Challenge	Low	Medium	High

"Superintelligence represents a theoretical form of AI that surpasses human cognitive abilities across all domains. Unlike today's Narrow AI systems that excel at specific tasks, Superintelligence would demonstrate extreme learning adaptability and potentially pose significant control challenges"

<u>Cole Stryker Tim Mucci. IBM. What is artificial superintelligence? (2023)</u> IBM. What is strong ai? (2021)

DDPS / armasuisse / Science and Technology / Cyber-Defence Campus

Key Technologies and Challenges

ANI (Achieved)

Key Technologies:

- Deep Learning
- Reinforcement Learning
- Large Language Models (LLMs)

AGI (R&D Phase)

Key Technologies:

- Neurosymbolic AI Transfer & Meta-Learning
- Cognitive Architectures Autonomous
- Self-Improving Systems

Key Challenges:

- Scalability of architectures
- Casual reasoning
- Robust long-term memory

ASI (Theoretical)

Key Technologies:

- Recursive Self-Improvement
- Neural Architecture Search
- Quantum AI
- Brain-Computer Integration Key Challenges:
- Control & Alignment
- Ethical & Existential Risks
- Energy & Compute Constraints

Comparative Analysis of Leading LLMs

Technology	Grok-3	Gemini 2.0	ChatGPT (GPT-4-turbo)	DeepSeek-R1	Claude 3
1. Core Architecture					
Transformer Architecture	Х	X	Х	X	Х
(Sparse) Mixture-of-Experts ((S)MoE)	X (suspected)	X	X (suspected)	X	х
Multi-Head Latent Attention (MLA)	Х		X (likely)	X	
Double-pass Architecture	X (likely)				
2. Optimization Techniques					
Multi-token Optimization	Х	Х	X (likely)	X	
Multi-round Optimization		х		X (suspected)	
KV Cache Compression			х	X	Х
Hybrid RL-SFT	V (huhuid)		Y (back rid)		х
RL Without SFT	X (hybrid)		X (hybrid)	Х	
Distillation to Smaller Models		X	X	X (Qwen-32B, Llama-3.1-8B)	
3. Learning & Training Paradigms					
RL	Х	Х	х	Х	Х
RLHF	Х	Х	х	Х	х
Self-Correcting RL (SCoRe)		X (suspected)			
Self-Supervised Learning (SSL)	Х	X	х	X (suspected)	х
4. Knowledge Integration & Reasoning					
Retrieval-Augmented Generation (RAG)	X (suspected)	Х	X (suspected)	X (likely)	X (suspected)
Modular Model Approach	X	Х			X (Haiku, Sonnet, Opus)
Built-in Error Detection and Correction	X (suspected)		X (likely)		
Metacognitive Abilities	,				х
5. Safety & Alignment					
Constitutional AI Framework					х
Censorship				X (Political censorship)	
RLHF	Х	х	х	X	х
SCoRe		х			
6. Capabilities & Interfaces					
Multimodal Capabilities	X (suspected)	X (Text, Image, Audio, Video)	X (Text, Image, Voice)	X (suspected)	X (Text, Image)
Extended Context Window	,	X (>30K tokens)	X (128K tokens)	· · /	X (200K tokens)
Scalability Beyond One Million Tokens			. ,		X (Potential)

Ege Erdil. How has deepseek improved the transformer architecture? (2025)

"Joel Wembo". "deepseek vs. openai vs. grok 3 — a tech saga technical comparison". "Medium", (2025)

DDPS / armasuisse / Science and Technology / Cyber-Defence Campus

Roadmap to ASI - Trends & Forecasts

2025	2030	POST	
Phase 1 : Actual AI	Phase 2 : Transition to AGI	Phase 3 : ASI Horizon	Cross-Cutting Priorities
Capabillities: Models reach billions of parameters	Drivers : Compute scaling, efficient algorithms, cross-domain generalization.	Potential: AI capable of self- improvement, strategic autonomy, superhuman cognition.	Sustainability: Control energy use and emissions as AI scales.
Challenges: High carbon impact, risks of misuse (cyberattacks, deepfakes).	Risks: Misalignment, lack of regulation, systemic threats.	Risks: loss of control, large-scale misuse, societal disruption.	Security: Tackle dual-use risks and adversarial threats early.
Priorities: ethics, carbon tracking, cybersecurity, AI auditing.	Focus : Value alignment, safe design, general-purpose agents.	Focus: meta-learning, alignment controls, recursive security.	Regulation: Build flexible, risk- based legal frameworks.
Growing applications: medicine, science, architecture.	Actions: Risk-based rules, global standards, sustainability by design	Actions: global rules, ethical consensus, robust audit systems.	Coordination: Align EU, Switzerland, and global efforts.

Nestor Maslej, Loredana Fattorini, and al. "The Al Index 2025 Annual Report," Al Index Steering Committee, Institute for Human-Centered Al, Stanford University, Stanford, CA, April 2025.

Potential Threats, Risks and Limitations of Advanced Al systems

Global prohibited practices:

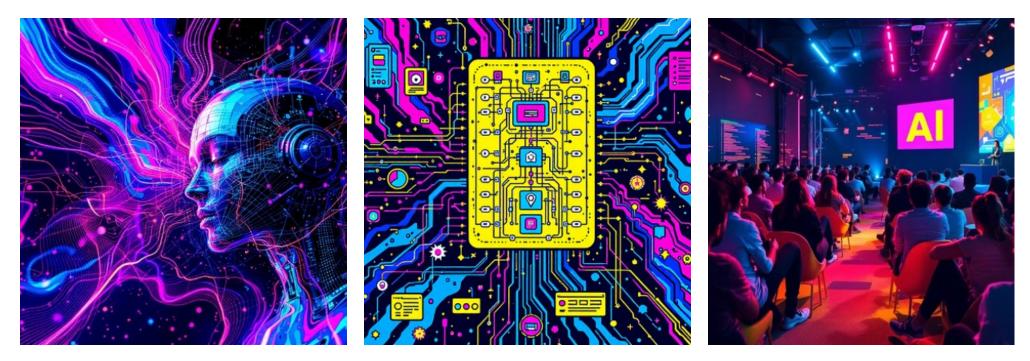
- **Cognitive manipulation** to manipulate human vulnerabilities
- Mass biometric surveillance and Social scoring
- Autonomous decision-making in justice, law enforcement, sensitive contexts

European Parliament and Council of the European Union. Regulation (EU) 2024/1689: The Artificial Intelligence Act. 2024. Official Journal of the European Union Allan Dafoe. Ai governance: a research agenda. Governance of Al Program, Future of Humanity Institute, University of Oxford: Oxford, UK, 1442, 1443., 2018. DDPS / armasuisse / Science and Technology / Cyber-Defence Campus Other threats to consider:

Concentration of power

- Strategic misuse
- Economic disruption

Highlights of Major Global Players


		★ ** **	* * * * * * * * *
Strategy	Private sector innovation & investment	Rapid industrialization Integration of AI	Collaborative approach Academic and Industrial
Number of Al models (2023)	>60 major Machine Learning Models	15 major Machine Learning Models	EU will overtake China in the number of AI models
Fundings (2023)	>\$67 billion investments	~\$7.8 billion investments	>\$8 billion investments
Other informations	Leading the World in Al research	50% of global industrial robot installations	Increase in public investment by 67 times

Nestor Maslej, Loredana Fattorini, and al. "The Al Index 2024 Annual Report," Al Index Steering Committee, Institute for Human-Centered AI, Stanford University, Stanford, CA, April 2024.

DDPS / armasuisse / Science and Technology / Cyber-Defence Campus

Conclusion

- 10 printed copies of the full report are available today.
- The online version will be released soon (currently undergoing internal approval).
- The Technology Monitoring team will continue with ongoing monitoring efforts.

