

Multi-Agent Reinforcement Learning (MARL) in Cyber Security

Enhancing Cyber Attack Autonomy Through Self-Play

19.06.2025

Christoph Landolt

CYD Master Thesis Fellow now working at CISPA Helmholtz Center for Information Security

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Agenda

1. Autonomous Intelligent Cyber Agents

- The Problem of Machine Learning in Intrusion Detection
- Autonomous Intelligent Cyber Agent Reference Architecture

2. Reinforcement Learning (RL) driven Attacker

- Introduction to RL
- Single-agent RL for penetration tests
- Experiments and results

3. Active RL-Defender

- Multi-Agent Reinforcement Learning (MARL) in Cyber Security
- Attacker-Defender Dynamics
- MARL control loop and training setup
- Observation and open challenges

4. Q&A Session

• Open floor for questions, discussion, and feedback

Introduction to Autonomous Intelligent Cyber Agents (AICA)

The Path to Agentic Cyber Defence

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Intrusion Detection and Response

How to overcome static defence?

Rule Based Network Security Appliance

Machine Learning Based Network Security Appliance

Problem & Proposed Solution Can Machine Learning Automate Coordinated Attacks?

Limited by Pre-existing Data Traditional ML relies on *existing datasets*, restricting its ability to discover novel strategies.

Distributed Attacks Attacks are performed by *multiple attackers*, complicating detection.

Constant *evolution of networks and attack strategies* prevents stable training conditions.

Problem & Proposed Solution Can Machine Learning Automate Coordinated Attacks?

Autonomous Intelligent Cyber Agents

How to build an automated cyber defence?

Autonomous Cyber Defense:

- Sensing & World State: Detect, gather/process data
- **Planning & Action**: Prioritize and select responses
- Action Execution: Implement and adapt actions
- **Collaboration**: Coordinate with agents or Humans
- Learning: Improve strategies via feedback

Architectures:

- **Centralized**: Master-agent control (e.g., SARL)
- **Distributed**: Self-organizing agents (e.g., MARL), more resilient but complex

Reinforcement Learning (RL) driven Attacker

Penetration Testing as a Sequential Decision making Problem

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Introduction to Reinforcement Learning (RL) How to learn through self play?

Use **Reinforcement Learning (RL)** when:

- Sequential decision-making is required
- No labeled data, but a reward signal is available
- Environment dynamics are uncertain or complex

Problem Can RL be used to automate Advanced Targeted Attacks (ATA)?

Attack graph starting from the Internet.

Problem Can RL be used to automate Advanced Targeted Attacks (ATA)?

Attack graph starting from the Internet.

Sequential Actions / No training Data

RL Environment Architecture

How to simulate a computer network for RL?

CyberGym Architecture

Environment	Red or Blue	Red and Blue	n blue or n Red
CyGIL (Li, Fayad, and Taylor 2021)	\checkmark		
PrimAITE (Dstl 2023)	\checkmark		
CSLE (Hammar and Stadler 2022)	\checkmark		
Gym-IDS game (Hammar and Stadler 2020)	\checkmark	\checkmark	
CyberBattle Sim (Microsoft 2021)	√		
MARLon (Kunz et al. 2022)	\checkmark	1	
Gym-Threat-defence (Miehling et al. 2015)	\checkmark		
Gym-Optimal-Intrusion-Response (Hammar and Stadler 2021)	✓		
AtMOS (Akbari et al. 2020)	\checkmark		
Yawning Titan (Collyer, Andrew, and Hodges 2022)	✓		
Farland (Molina-Markham et al. 2021)	\checkmark		
CYST (Drašar et al. 2020)	\checkmark		
CybORG (Standen et al. 2021)	\checkmark		\checkmark

Source: Kiely et al. 2024, AAAI-25

Single Agent Training in CyberBattleSim Gym Can an attacker move laterally?

A chain of abstract network components, all of which have been intentionally made vulnerable.

Comparison of different RL algorithms

Single Agent Training in NASimEmu Gym Can an attacker navigate complex networks?

Visualization of the test network based on: <u>A. Basak et. al. (2021), Scalable Algorithms for Identifying Stealthy</u> Attackers in a Game-Theoretic Framework Using Deception

MLP Policy Network

Can a Feed Forward Neural Network be used for Autonomous Cyber Agents?

Multilayer Perceptron (MLP) Policy and Value Network with shared Feature Extractor.

50k

0

100k

150k

GRU Policy Network with Skip Connections Can residuals help to prevent vanishing gradients?

Reward Comparison 400 GRU Skip Connection - Smoothed GRU - Smoothed Skip Connection Variance 300 Variance 200 θ MLP with GRU **Total Reward** 100 Skip Connection host features softmax action matrix GRU ez -100 $\sum_{j=1}^N e^{ij}$ 25000 50000 75000 100000 125000 150000 175000 padding Step masked actions Title Reward in Test Environment GRU Skip Connection - Smoothed GRU - Smoothed GRU Skip Connection Variance GRU Variance state value **Evaluation Reward**

-2

25000

50000

75000

100000

Step

125000

Implementation of a Gated Recurrent Unit (GRU) to realize the memory component in the policy-value network with Skip Connections to prevent vanishing gradients.

175000

150000

Self Attention Policy Network

Can the weighting of local information improve decision-making?

Implementation of a Self-Attention Mechanism to realize the memory component to leverage local and global information.

Active Defender

How can cyber security be learned as a game?

Ū

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

The Defender

How can the defender protect his resources?

- Deploying Host sensors
- Deploying Network Sensors
- Deploying Security Mechanisms

Placement of network sensors for different architectures for intrusion detection systems (IDS)

Attacker-Defender Dynamics

How Do Attackers and Defenders Compete in the Cybersecurity Game?

Gamification of attacker-defender dynamics with defender cost constraint.

Multi-Agent Reinforcement Learning Loop How to train multiple agents in a shared environment?

MARL Training Setup How can MARL be used to train AICA?

MARL – Game Design

How can game-theoretical dynamics be modeled in MARL?

Feature	Zero-Sum Game	Stackelberg Game	
Interaction	Simultaneous, direct competition	Leader-follower (sequential)	
Defender's Role	Reacts equally to attacks	Moves first, optimizes proactively	
Attacker's Role	Always competes to maximize own gain	Observes and optimizes attack based on defense	

Game model as Agent Environment Cycle (AEC)

Open Challenges

What should be done next?

• Policy Generalization Failure:

 Abstract simulations lead to overfitting and poor transferability to real-world systems.

Large State/Action Spaces:

• Impede the convergence and efficiency of the training process.

Limited MARL Tooling:

• Existing frameworks lack robust support for multi-agent scenarios.

Q&A Session

Open floor for questions, discussion, and feedback

C

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra