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Agenda

1. Autonomous Intelligent Cyber Agents
* The Problem of Machine Learning in Intrusion Detection
* Autonomous Intelligent Cyber Agent Reference Architecture

2. Reinforcement Learning (RL) driven Attacker

* Introduction to RL
* Single-agent RL for penetration tests
* Experiments and results

3. Active RL-Defender

* Multi-Agent Reinforcement Learning (MARL) in Cyber Security
* Attacker-Defender Dynamics

* MARL control loop and training setup

* Observation and open challenges

4., Q&A Session

* Open floor for questions, discussion, and feedback
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The Path to Agentic Cyber Defence
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Intrusion Detection and Response

How to overcome static defence?
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Problem & Proposed Solution
Can Machine Learning Automate Coordinated Attacks?
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discover novel strategies. stable training conditions.




Problem & Proposed Solution
Can Machine Learning Automate Coordinated Attacks?
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Limited by Pre-existing Data
Traditional ML relies on existing
datasets, restricting its ability to

discover novel strategies.
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Distributed Attacks

Attacks are performed by multiple
attackers, complicating detection.

(W
Non-Stationary Environments
Constant evolution of networks

and attack strategies prevents
stable training conditions.

Solution

Reinforcement Learning (RL)
RL explores actions through trial
and error, enabling it to find

innovative and optimal strategies.
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Coordinating Attack-Agents
Multi-agent systems can mimic
distributed attacks for more
realistic detection challenges.

@
Multi-Agent RL
Allows adaption in real-time,

addressing non-stationary and
evolving attack strategies.




Autonomous Intelligent Cyber Agents

How to build an automated cyber defence?

Environment
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NATO Autonomous Intelligent Cyber-defense Agent (AICA) Reference Architecture

Autonomous Cyber Defense:

* Sensing & World State: Detect, gather/process data
* Planning & Action: Prioritize and select responses

* Action Execution: Implement and adapt actions

e Collaboration: Coordinate with agents or Humans

* Learning: Improve strategies via feedback

Architectures:

* Centralized: Master-agent control (e.g., SARL)

* Distributed: Self-organizing agents (e.g., MARL),
more resilient but complex
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Reinforcement Learning (RL)
driven Attacker

Penetration Testing as a Sequential Decision making Problem



Introduction to Reinforcement Learning (RL)
How to learn through self play?

state s;

St+1

:[ Agent

reward ry

Environment

RL control loop

action a;

Use Reinforcement Learning (RL) when:

e Sequential decision-making is required
* No labeled data, but a reward signal is

available

* Environment dynamics are uncertain or

complex



Problem

Can RL be used to automate Advanced Targeted Attacks (ATA)?

Compromised
Machine
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Problem
Can RL be used to automate Advanced Targeted Attacks (ATA)?

Exploit public- Exploitation of Machine
facing application remote services

Yes
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Initial access:  Lateral movement: 41'> { Compromised J % ?\e

Attack graph starting from the Internet.

Sequential Actions / No training Data




RL Environment Architecture
How to simulate a computer network for RL?

Scenario Loader
Topology Generator

-

Simulation Core

Action/Observation Spaces
Reward + Done Logic
Simulates network nodes
Simulates network traffic
Network State Management
Vulnerability surfaces

c
e
4+
O
©
—
()
+—
=
4+
c
(V)
[eT9]
<<
—
[e]
g
[}
O
()
Y
—
(O}
4+
=

-
Q
Q.
(o
(1]
=
=
o
Q
(S
| e
()
—
>
c
Ll
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Interface for Agent Observation

Environment

Red or Blue

Red and Blue

n blue or n Red

CyGIL (Li, Fayad, and Taylor 2021)

PrimAITE (Dstl 2023)

CSLE (Hammar and Stadler 2022)

Gym-IDS game (Hammar and Stadler 2020)

CyberBattle Sim (Microsoft 2021)

MARLon (Kunz et al. 2022)

Gym-Threat-defence (Miehling et al. 2015)

Gym-Optimal-Intrusion-Response
(Hammar and Stadler 2021)

AtMOS (Akbari et al. 2020)

Yawning Titan (Collyer, Andrew, and
Hodges 2022)

Farland (Molina-Markham et al. 2021)

CYST (Drasar et al. 2020)

CybORG (Standen et al. 2021)
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Source: Kiely et al. 2024, AAAI-25
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Single Agent Training in CyberBattleSim Gym

Can an attacker move laterally?

Attacker agents vs Basic Defender -- rewards
env=CyberSwarmSentinel-v0, episodes=10
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A chain of abstract network components, all of which have been intentionally step

made vulnerable. Comparison of different RL algorithms
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https://www.microsoft.com/en-us/research/project/cyberbattlesim/

Single Agent Training in NASIimEmu Gym

Can an attacker navigate complex networks?

H: Host Computer
@ S: Server
R: Router

@ V@ﬂ\ F: Firewall

o)
@\\e @%@e
Q ) g

e @ a I Optimal Path of Attacker 1 @ e @
e Il Optimal Path of Attacker 2 e e

Visualization of the test network based on: A. Basak et. al. (2021), Scalable Algorithms for Identifying Stealthy

Attackers in a Game-Theoretic Framework Using Deception
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https://arxiv.org/abs/2305.17246
https://ieeexplore.ieee.org/document/9536360
https://ieeexplore.ieee.org/document/9536360

Test Reward

MLP Policy Network m

Can a Feed Forward Neural Network be used .
for Autonomous Cyber Agents? o
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host features

padding

GRU Policy Network with Skip Connections

Can residuals help to prevent vanishing gradients?

8 MLP with GRU

Skip Connection
I action matrix
masked actions

state value

softmax
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Implementation of a Gated Recurrent Unit (GRU) to realize the memory component
in the policy-value network with Skip Connections to prevent vanishing gradients.
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Self Attention Policy Network

Can the weighting of local information
improve decision-making?

Host Feature Vectors +
Positional Embeddings

Rositional Embeddings

Shared Linear Layer

with LeakyRelLU
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Implementation of a Self-Attention Mechanism to realize the memory component to
leverage local and global information.
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Active Defender

How can cyber security be learned as a game?
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The Defender

How can the defender protect his resources?

* Deploying Host sensors

* Deploying Network Sensors

* Deploying Security
Mechanisms

Firewall
_ RL-Agent | _ RL-Agent . ﬁ\ternal Network . \
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Option 2: Multi-Agent RL
Single-Agent Reinforcement Learning (SARL)
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e i
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Placement of network sensors for different architectures for intrusion detection systems (IDS)
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Attacker-Defender Dynamics
How Do Attackers and Defenders Compete in the Cybersecurity Game?
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Multi-Agent Reinforcement Learning Loop
How to train multiple agents in a shared environment?
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MARL control loop




MARL Training Setup
How can MARL be used to train AICA?
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MARL — Game Design

How can game-theoretical dynamics be modeled in MARL?

m Zero-Sum Game Stackelberg Game

Leader-follower (sequential)

Interaction Simultaneous, direct competition

Defender’s Role Reacts equally to attacks Moves first, optimizes proactively

Attacker’s Role Always competes to maximize own gain  Observes and optimizes attack based on defense

Agentq

—> State } [ State }

Agent)

Agentq

Agenty

Partially Observable Stochastic Games (POSGs) modelled as Parallel Game Game model as Agent Environment Cycle (AEC)
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Open Challenges

What should be done next?

* Policy Generalization Failure:

* Abstract simulations lead to overfitting and poor transferability to real-world
systems.

* sLarge State/Action Spaces:
* Impede the convergence and efficiency of the training process.

* s'Limited MARL Tooling:
 Existing frameworks lack robust support for multi-agent scenarios.



Check out our Paper

Q&A Session

Open floor for questions, discussion, and feedback
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