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Research Motivations

Rapid publication growth

Scientific publications are growing at unprecedented rates.

@ Trend Tracking Challenge

Defense operations aim to identify relevant emerging trends.

% Knowledge Graph

Existing methods like Knowledge Graphs map topic relationships.

@ GNN Opportunity

Can Graph Neural Networks (GNNs) enhance our ability to forecast the

technological trends?
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Research Objectives

Predict emerging technologies using GNNs

Leverage :
* Frequency of specific trend mentions
* Growth in citation rates
% Long term dependencies across time
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Data Collection and Processing
1. Data source

Abstracts of scientific paper from OpenAlex : select 100000
scientific papers (quantum use case)

2. Keyword extraction
Context aware extraction from the articles using NLP

KeyBERT : uses BERT embeddings, general keyword extraction
SPECTER : document-level embeddings for scientific papers

KeyBERT+SPECTER : extraction by leveraging the scientific
context
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Graph Construction

Charge insensitive qubit design derived from the Cooper pair box

Jens Koch,! Terri M. Yu,! Jay Gambetta,! A, A Houck,! D. L. Schuster,’ J.
Majer.! Alexandre Blais,®? M. H. Devoret.,! 5. M. Girvin.! and R. J. Schoelkopf!

! Departments of Physics and Applied Physies, Yale Universily, New Haven, Connecticul 06520, USA
*Département de Physique el Regroupement Québécois sur les Malériour de Pointe,
Universilé de Sherbrooke, Sherbrooke, Québec, Canada, JIK 2R]

(Dated: September 26, 2007)

Short dephasing times pose one of the main challenges in realizing a quantum computer. Different
approaches have been devised to cure this problem for superconducting a prime example
being the operation of such devices at optimal working points. so-called “sweet spots.” This latter
approach led to sipnificant improvement of Ts times i:hux qubits [D. Vion et al., Science
206, 886 (2002)]. Here, we introduce a new type of superconducting qubit called the “transmon.”
Unlike the charge qubit, the transmon is designed to operate in a regime of significantly increased

ratio of Josephson energy and charging energy Ei/Ec. T]LtmmrﬁtH from the fact that its

charge dispersion decreases exponentially with Ei/Eq, while T8 oe= in anharmonicity is deseribed
by a weak power law. As a result, we predict a drastic reduction in sensitivity to charge noise
relative to the Cooper pair box and an increase in the qubit-photon coupling, while maintaining
sufficient anharmonicity for selective qubit control. Our detailed analysis of the [ull system shows
that this gain is not compromised by inereased nolse in other known channels.

PACS numbers: 03.67.Lx, T4.50.4r, 32.80.-t

qubit qubit
+1 O +1
transmon transmon +1
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For each month :

- Scan the abstracts of the new articles published

- Create a new graph

From 1987 to 2025 : 500 graphs
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Identification Results

Cumulative Occurrences & Co-occurences
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Prediction Task

Question : will a given node emerge in the future ?

Definition of the emergence score

. . W w
Percentage increase in occurences + co-occurences : 1 2
N\
el Y e

V ue N(v) uv W
emergence( v,t+ 1) = + W 0w,

f
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o3

Definition of emergence °
W3

Node emergence if score > 70th percentile (relative threshold)
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Our GNN model : GCN+GRU

G G
Classification task: predict if a node will emerge. T Graphs =1 @
GCN on each graph (structural gnalysis) { GCN }
Aggregates spatial features from neighboring

d d des int beddi t : [ ]
nodes and encodes into embedding vectors Embeddings H_ | ... H,
representing each node context

GRU on each of the embedding node sequences [ GRU }

@

Processes the temporal sequence of embeddings

independently for each node, capturing its

Estimated top 30%
nodes at t+Forecast

Output [

evolution over time.
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Parameter Overview
T Graphs |G,_; - | G,
Model Parameters
Embedding dimension 32 { GCN }
activation RelLU
Embeddings | | #,-¢r| ==+ | H,
loss function BCE V
Training
[ GRU }
Sequence length (T) 4 months U
Forecast 3 months
Output [ Estimated top 30% }
Training data 2021 - 2024 nodes at t+Forecast

Epochs 20
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Evaluation

Naive methods

Confusion Matrix

Random predictor according to the
class distribution (F1) 0.45

TN
79.87%

Class 0

Majority class predictor (Weighted F1) | 0.5

Accuracy score 0.80 —
Class 11 22.77%
AUC score 0.85
F1 score 0.75 N

Predicted label
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O Prediction Results

Predictions using our GCN+GRU model : (3 months forecast)
Top 10 tlopics likely to gain Iinterest
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Summary

v Keyword extraction
V' ldentification of the past trends

v/ Our GNN model seems to work for predicting emerging technology
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Future Works

e Use the citation and author features

e Use other GNN architectures such as GTAN (Graph Temporal Attention
Network)

e Use other model hyperparameters and emergence metrics

e.g. node emergence if score > 0.3 (arbitrary threshold)

e Apply the framework to another use case : Cyber Security in Space
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Questions ?
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