Dynamic Network Modelling for Quantum Technologies Monitoring

Cyber Alp Retreat – 20.06.2025

Jean-Marie Le Goff/PhD, Dphil CERN (retired)

Graphs are best at representing networks but there are risk of loosing information

• Tabular data (incident matrix) contains more than the data elements. Connectivity: Data elements are connected together within a row

Incident matrix			
PubRef	Organisations	Keywords	
PubA	['Org2', 'Org3', 'Org4']	['3D', 'Augmented Reality']	
PubB	['Org1', 'Org2']	['Computer Vision', 'Scene Reconstruction']	
PubC	['Org3', 'Org4']	['Augmented Reality', 'Scene Reconstruction']	
PubD	['Org3', 'Org5']	['3D', 'Augmented Reality']	

Edge colors highlight co-occurences in graph representation

b. Co-occurrences of organizations with keyword as reference

scene reconstruction	$\left\{\left\{\operatorname{Org}1^1,\operatorname{Org}2^1\right\}\right\}$
computer vision	$\left\{\left\{\operatorname{Org1^{1}, Org2^{1}, Org 3^{1}, Org 4^{1}}\right\}\right\}$
augmented reality	$\left\{\left\{\operatorname{Org}2^1,\operatorname{Org}3^3,\operatorname{Org}4^2,\operatorname{Org}5^1\right\}\right\}$
3D	$\left\{\left\{\operatorname{Org}2^{1},\operatorname{Org}3^{2},\operatorname{Org}4^{1},\operatorname{Org}5^{1}\right\}\right\}$

Co-occurrence networks are accurately represented as hbgraphs where rows represent hyper bag (hb) edges

This kind of representation doesn't scale up. Complexity hinders insight.

Vertex weighted degree ranking: 1. Org 2; 2. Org 3; Org 4; 4: Org 5; Org 1. b.(ii) Hb-graph

Vertex weighted m-degree ranking: **1. Org 3**; 2. Org 2; Org 4;

4: Org 5; Org 1.

Hyperedge weighted cardinality ranking:

1. CV, AR, 3D; 2. SR

Hb-edge weighted m-cardinality ranking: 1. AR; 2: 3D; 3: CV; 4: SR

Support Hypergrap information is restored in a single node type Graph by adding a feature on the edge and using interoperability between chart and graph

Cardinality relation between edges and hyperedge: n(n-1)/2

Example: Patent encoding and encryption landscape

Title	Applicants	Applicants Origine
Title1	['App1', 'App2']	['Ori1', 'Ori2']
Title2	['App1', 'App3']	['Ori1', 'Ori3']
Title3	['App4', 'App5', 'App6']	['Ori1', 'Ori1', 'Ori4']

Using single node type graph and adding the feature Title on the edges to Visualise international collaborations

Hb-graph information is restored in dual node type Graph by adding a feature on the edge in the schema and ...

... Using Interoperability between Graph and Chart exploration

Example: Qantum encryption patent landscape

Edge details	×		
Edge frequency 9	Total search results		
Connected nodes	Node frequency		
Quantum encryption Feature: Search terms	3		
OPTICAL KEY PROTECTED QUANTUM AUTHENTICATION AND ENCRYPTION Feature: Title			
Linked features	Search results		
Applicants			
SCHOTT AG 1 UNIV TWENTE 1			
Applicants location			
DE 1 NL 1			

Adding semantic information on the edges simplifies the network

Simplified network: Features Applicants & Applicants location are on edges

Dynamic Network Modelling: Schemabased graph generation + Chart, table and graph interoperability + In-graph search and trim operations

Retains all the information contained in the incident matrix

Reduces visual complexity

Enhances insight by selecting different perspectives (graph schemas)

Focuses on correlations of interest

An overwhelming number of published items

Changing by the day

Publications*

OpenAlex Works Q Search OpenAlex		Log In Sign Up	1
Unsaved search -		¢ 🕸	×
Show works where:			
● Q title & abstract includes → "quantum technology" 🖌			\times
• •			
Works	Stats	+	2
Photonic quantum technologies 2009 - Jeremy L. O'Brien, Akira Furusawa, et al <i>Nature Photonics</i>	57,610 results	open access	×
Cited by 2.097 PDF	🖻 year 💠 🗧 🗧	47.2%	
Quantum Estimation For Quantum Technology 2009 · Matteo G. A. Paris · International Journal of Quantum Information Cited by 1,325 POF		21,200	
Integrated photonic quantum technologies 2019 - Jianwei Wang, Fabio Sciarrino, et al <i>Nature Photonics</i>	More		
Cited by 1,166 PDF	© topic : ×	A institution	×
Quantum technology: the second quantum revolution 2003 · Jonathan P. Dowling, G. J. Milburn · Philosophical Transactions of the Royal Society A Mathematical Physical and	Quantum Information and 4,776 Cryptography	Chinese Academy of Sciences	,796
Engineering Sciences Cited by 866 PDF	Quantum Computing Algorithms and 4,320	Centre National de la Recherche 1 Scientifique	,388
	Photonic and Optical Devices 1,874	United States Department of Energy 1	,317
Quantum technologies with hybrid systems	Quantum-Dot Cellular Automata 1,367	Office of Science	838
2015 - Gershon Kurizki, Patrice Bertet, et al Proceedings of the National Academy of Sciences Cited by 705	Quantum Dots Synthesis And Properties 1,249	Max Planck Society	641

*OpenAlex: <u>https://openalex.org/works?filter=default.search%3AQuantum%20technology</u>

**EspaceNet Advanced Search: <u>https://worldwide.espacenet.com/patent/search?q=ctxt any "Quantum"</u>

Home	>	Results	
------	---	---------	--

Title, abstract or claims	~	any	~	
quantum				

```
Search Reset
```

Patents**

Relevance

140 826 results found 1/12/2024 140 687 results found 29/11/2024

List content Sort by

(0 patents selected) Select the first 20 results

V All

List view

→ Group

Text only

1. DEVICE INCLUDING QUANTUM DOTS

US10056523B2 (A1) • 2018-08-21 • SAMSUNG RES AMERICA INC [US] Earliest priority: 2009-11-11 • Earliest publication: 2011-05-19

...A method of making a device comprises forming a layer comprising quantum dots over a substrate including a first electrode..., exposed surfaces of the fixed layer comprising quantum dots to small molecules. The layer comprising quantum dots can be preferably... a layer

2. METHOD AND SYSTEM FOR OPTIMAL DECOMPOSITION OF SINGLE-QU... US2015186587A1 (B2) • 2015-07-02 • MICROSOFT TECHNOLOGY LICENSING ... Earliest priority: 2012-07-19 • Earliest publication: 2014-01-23

... single-qubit quantum operation comprising a representation of a quantum-circuit generated from a discrete, quantum-gate basis. The discrete quantum-gate basis comprises standard, implementable quantum gates. The methods and systems employ a database of canonical-

3. Coupled Asymmetric Quantum Confinement Structures

US2011121263A1 (B2) • 2011-05-26 • UNIV SEOUL IND COOP FOUND [KR] Earliest priority: 2009-11-24 • Earliest publication: 2011-05-26 Implementations and techniques for coupled asymmetric quantum confinement structures are generally disclosed.

4. Syndrome Of Degraded Quantum Redundancy Coded States

US2014201591A1 (B2) • 2014-07-17 • ALCATEL LUCENT USA INC [US] Earliest priority: 2013-01-15 • Earliest publication: 2014-07-17

... receive n corresponding physical objects of a physically processed, <u>quantum</u> redundancy coded state. The n output ports are configured to output the n physical objects in the physically processed, <u>quantum</u> redundancy coded state. The device is configured to measure bits of a

~ :

Rational for dynamic network modelling

• The main component of a graph of publications from a search in quantum technology is far too complex to be insightful

CSX visualisation tool developed at CERN by Aleksander Bobic

Co-occurrence network of Concepts & Publications

OpenAlex API, Search: "Qantum Technology" in titles

Network

Nodes: OpenAlex Concepts Edges: Publication Titles (ranked)

→Blue Nodes: Connected component of concepts linked by titles

→Yellow and Red Concepts correspond to other components

Sub-network of the most popular Concepts

S

€

Sub-network of the most connected Concepts

Edge weight: Nbr of titles

Trim & Expand Network to discover additional topics

OpenAlex API, Search: "Qantum cryptography" in titles **Filter on Concept**: "Algorithm"

Network Nodes: OpenAlex Concepts Edges: Titles (ranked)

→ OpenAlex provides a ranking algorithm
 → The first 200 titles will not fully address a particular Concept → Trim and Expand
 → The first 200 titles may not contain the Concept you are looking for → Expand

Step 1: Select Node for Triming the network

Trim & Expand to focus on Quantum Cryptography Algorithm

(In-graph search)

Step 2 Trim: Remove titles not related to Concept: "Algorithm"

Step 3 Expand: Search for more titles related to Concept: "Algorithm" in the context of "Quantum Encryption"

After triming and expansion: AI as an emerging Concept

Egocentric view & corresponding chart: AI Concept network after trimming and expanding the in-graph search for titles containing "Quantum Encryption" in the context of Concept "Algorithm"

With the emergence of quantum computers, post-quantum cryptography is a subjet matter of concern

Egocentric view

Outliers in Quantum Cryptography for strategic information

Homomorphic Elliptic-based algorithm to resist quantum computer attacks

Searching in a corpus of 235 Patents on encryption and data compression those with "Quantum" in the title

- Two separate Components
 - 1 related to quantum encryption (blue edges)
 - 1 related to Data compression (orange edges)

ABSTRACT Data compression includes: inputting data comprising a vector that requires a first amount of memory; compressing the vector into a compressed representation while preserving information content of the vector, including: encoding, using one or more non-quantum processors, at least a portion of the vector to implement a quantum gate matrix; and modulating a reference vector using the quantum gate matrix to generate the compressed representation, wherein the compressed representation requires a second amount of memory that is less than the first amount of memory; and outputting the compressed representation to be displayed, stored, and/or further processed.

PUBLICATION NUMBER https://worldwide.espacenet.com/patent/search/publication/US11580 195B1 *2*

Thank you for your attention

Jean-Marie Le Goff

- Co-Founder & Co-CEO
- + 41 78 267 54 54
- jean-marie.legoff@dtangle.ch

Marc-André Siegrist

- Co-Founder & Co-CEO
- + 41 79 702 15 35
- marc.siegrist@dtangle.ch

Dtangle SA

- La Voie-du-Coin 28, 1218 Le Grand-Saconnex, Switzerland
- Website: <u>https://dtangle.ch</u>