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This wasn’t entirely unexpected
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Indirect technological impact?
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https://arxiv.org/abs/2303.12132 (March 2022)
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What LLMs “Learn”



Autoencoder Fine-Tunes



LLMs have Failure Modes
(Due to the Training Data)
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(And some Have Implications)



Size Matters, but 
Smaller LLMs Provide Insight on Larger Ones



That Goes for Failures Too



Sanity check: 
Ability to detect topic with extracted entities 
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Methods (models)

• 4 major types

• Document segmented to fully
fit the attention windows

• At most 100 entities extracted
• Select by highest confidence
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Methods (visualisations)

• Hierarchical clustering
• Embedded with SpaCy

• Average cosine distance

• Identify similitude between 
extractor

• 2D Projection
• Subsample data: reduce 

processing time and number of 
point

• 6 embeddings:
• SpaCy, GloVe, Fasttext, Word2Vec, 

BERT-large, GPT-2

• 4 low-dimensional projection
• Linear, spectral, t-SNE, UMAP

• Show if themes can be detected in 
an unsupervised way
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Results and Discussion

• Performance manly define by 
architecture and fine-tuned 
dataset

• Dataset not based on scientific 
texts
• Conll03

• => Not suited for scientific 
articles
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Results and Discussion
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• Cosine similarity of
embedding do not perform 
well to cluster themes
• Even with 2D embedding

algorithm that tend to overfit

• Exception with NER



Umap projection of Spacy using RoBERTa-
large conll03 (NER)
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Results and Discussion
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• Cosine similarity highly
dependent of embedding
space

• Important change with
different embedding and 
algorithm



Where go from there?
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WP3: Enabling rigorous indirect technological 
impact prediction
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LLMs are ~ compressive autoencoders



Let’s build compressive autoencoders
directly on what we are interested in!
1. Concepts:

• Extract all nouns

2. Specific to cyber-security:
• Find specific nouns

3. That are connected:
• Find correlated nouns



Sanity check: 
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Extract nouns

Approach
• PDF:

• Filter for English
• Remove header and bibliography 
• Transform to text

• spaCy
• Pull noun groups 
• (high + school  vs high school)

• Retain:
• Nouns found in >4 documents
• Nouns found >4 times

Sample:
• secret sharing scheme

• pseudorandom function

• residual codekey agreement

• pseudorandom permutation

• geometric code

• non-negligible advantage

• gf q rational divisor

• knowledge property

• new cryptosystem



Find specific nous

Approach

• Nouns frequency in:
• arXiv cs.CR

• arXiv cs

• BookCorpus

• Compare frequencies
• Classical Statistics

Results
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Next stop: Term relations



Instead of a conclusion
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Thanks for your attention!
Questions?

Gen Learning Center: 
https://tinyurl.com/hevs-gen-learning
Report: https://arxiv.org/abs/2303.12132

Maxime Würsch
CYD intern

https://tinyurl.com/hevs-gen-learning

