

Follow the Path: Hierarchy-Aware Extreme Multi-Label Classification

Cyber Alp Retreat, 23.06.2023

Natalia Ostapuk, Julien Audiffren, Ljiljana Dolamic, Alain Mermoud, Philippe Cudré-Mauroux

Introduction: Big Picture

- Joint project with armasuisse Cyber Defence Campus (CYD).
- **CYD**: early identification of trends in the cyber area:
 - Comprehensive technology and market monitoring.
- CYD & UniFR:
 - **Taxonomy expansion:** build a high-quality taxonomy of technology-related concepts which can be automatically expanded [1].
 - **Semantic text tagging:** build a framework for tagging text with relevant concepts from the taxonomy.

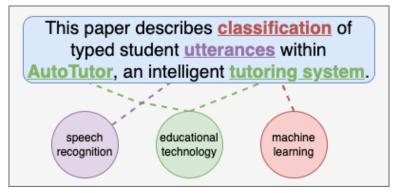
https://www.ar.admin.ch/en/armasuisse-wissenschaft-und-technologie-w-t/cyber-defence_campus.html

Introduction: Problem Statement

- Semantic text tagging: given a document in natural language and a taxonomy of technology related concepts, tag the document with concepts representing its semantic content.
- Approach: Extreme Multi-Label Text Classification (XMLC)
 Assigning to each document the most relevant subset of labels from an extremely large label collection.
- Specifics:
 - Scientific and technical texts.
 - Labels organized hierarchically (taxonomy).

Approach: Underlying Ideas (1/2)

Intuition 1: positive labels assigned to a document are usually represented by *specific tokens* in that document.



<u>Existing XMLC approaches</u>: document \rightarrow label probabilities.

Improvement: capture the most relevant portion of document for each label.

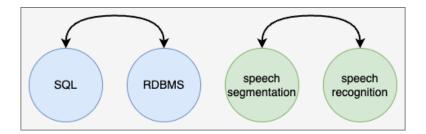
<u>Solution:</u> attention mechanism.

Approach: Underlying Ideas (2/2)

Intuition 2: positive labels assigned to

the same document are often

correlated and should be treated jointly.



Existing XMLC approaches: labels are predicted *independently*.

Modeling label correlation [1]:

- Chain of binary classifiers (one per label).
- Output of each next classifier is conditioned on outputs of previous classifiers.
- Similar to the decoding process in a Seq2Seq model.

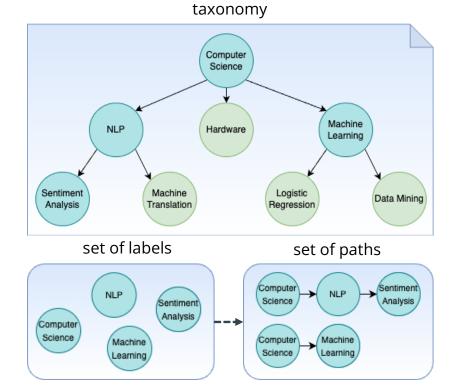
Multi-Label Classification as Seq2Seq Problem

- **Sequence-to-sequence** (Seq2Seq) learning is the task of transforming an input sequence from one domain into an output sequence from another domain.
- **Multi-Label Classification as Seq2Seq:** given an input sequence of tokens (document) generate an output sequence of labels.
- Advantages:
 - Allows to incorporate token-label cross-attention (intuition #1)
 - Labels are generated sequentially, conditioned on previously generated labels (intuition #2)
- **Issue:** labels are organized in sets and do not form a sequence.

Path Prediction

Converting labels **set** into **sequence**(s):

- Leverage label taxonomy
- Set of labels → set of paths in a taxonomy
- Each path *does* form a sequences and can be used in Seq2Seq models

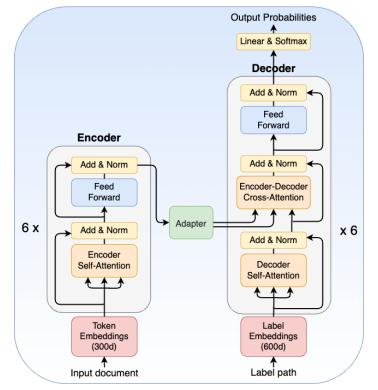


Approach: Summary

- **HECTOR** Hierarchical Extreme Classifier for Text based on transfORmers.
- Label prediction → **path prediction**.
- Leverage Seq2Seq architecture **Transformer**.
- Transformer encoder-decoder **cross-attention** highlights the most relevant tokens of the input data w.r.t. each label.
- Labels are predicted **sequentially**, from the most generic (first level of the taxonomy) to more specific.
 - Labels at top levels are easier to predict.
 - Predicted top labels then serve as an additional signal for predicting labels at deeper levels.

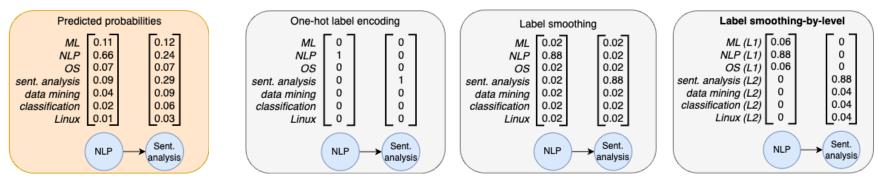
HECTOR: Architecture

- Encoder:
 - Generate contextualized representations of tokens in the input document.
- Decoder:
 - 600d label embeddings.
 - Decoder self-attention: considers previously predicted labels to generate a coherent path.
 - Encoder-decoder cross-attention: captures dependencies between input tokens and output labels.
- Prediction layer:
 - Predict label probabilities from generated label representations.



HECTOR: Loss Function

- **Kullback-Leibler divergence loss** measures dissimilarity between two probability distributions.
- **Label smoothing** replacing the one-hot encoding of the target labels with a smoothed distribution.
- Label smoothing-by-level distribute smoothing mass throughout labels of the corresponding level of taxonomy.



HECTOR: Training

- **Multi-path problem**: labels from different (sub-)domains belong to different paths in the taxonomy => multiple relevant paths per document.
- <u>Solution</u>: randomly select one path at each training epoch.
 - Introduce variability and avoid overfitting.
 - Model learns to generate all possible paths with equal probability.

• Ensemble training:

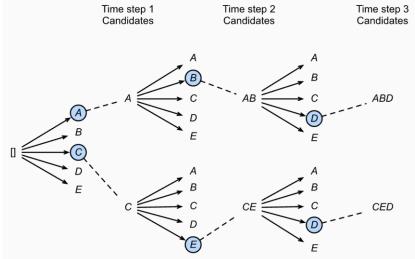
- Each instance of HECTOR is trained on a slightly different subset of paths => capture different aspects of data.
- Ensemble of models improves overall quality and diversity of generated paths.

HECTOR: Path Generation

- Paths are generated by decoder.
- Sequential decoding label-by-label.
- Individual label probability:

 $P(l_j, p) = \prod_{i=0}^{j} p(l_i)$ where $p = (l_0, l_1, ..., l_{j-1})$

- Beam search algorithm:
 - Maintains a *set* of the most promising candidate paths.
 - Allows decoding *multiple sequences* simultaneously.
- <u>Final ranking</u>: sort labels from paths by their individual probabilities.



https://d2l.ai/chapter_recurrent-modern/beam-search.html

Experiments and Results

Evaluation Tasks

- Label completion:
 - Goal: predict missing or incomplete labels for documents where labels are partially provided.
 - Motivation: subjectivity of human annotators, evolving data, privacy concerns, etc.
 - **XMLC** specific case of label completion with **0% observed** labels.
- Label refinement:
 - Special case of label completion where only **general** labels are provided.
 - Motivation: labels representing broader categories or higher-level concepts are often trivial to predict, while assigning more specific labels might be challenging.

Datasets

- MAG-CS:
 - Dataset: abstracts of papers published at top **CS** conferences from 1990 to 2020.
 - Taxonomy: MAG label taxonomy, CS domain (descendants of *Computer Science* concept).

• PubMed:

- Dataset: papers published in 150 top journals in **medicine** from 2010 to 2020.
- Taxonomy: Medical Subject Headings (MeSH) hierarchically-organized thesaurus.

• EURLex:

- Dataset: English EU **legislative documents** from the EUR-LEX portal.
- Taxonomy: European Vocabulary (EuroVoc) multidisciplinary thesaurus.

[1] Y. Zhang, et al. "MATCH: Metadata-Aware Text Classification in a Large Hierarchy." WWW, 2021.[2] Z. Shen, et al. "A Web-Scale system for scientific knowledge exploration." ACL, 2018.

Baselines

- **XML-CNN** features CNN for learning an input document representation.
- **AttentionXML** uses RNN for document representation and multilabel attention mechanism.
- **MATCH** jointly pretrain embeddings for the metadata; leverage label hierarchy for model regularization.
- **Transformer** vanilla Transformer encoder for document representation with a fully-connected layer for multi-label classification.

Metrics

• **NDCG@k:** measures the quality of ranking assigning higher scores to hits at top ranks; accounts for the varying number of positive labels per instance.

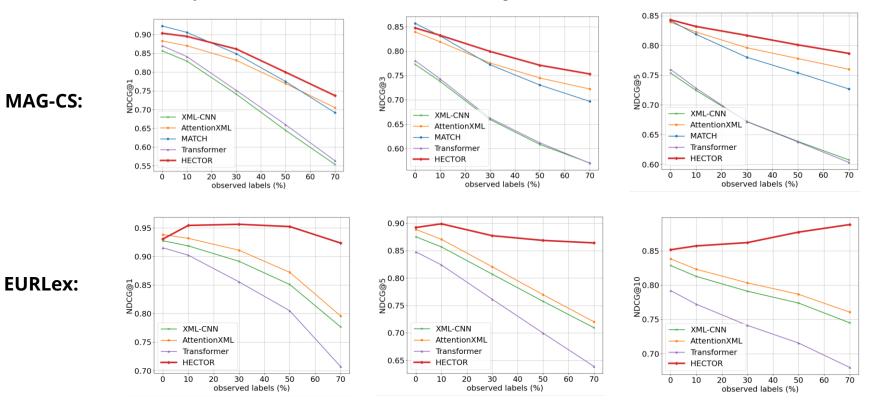
$$DCG@k = \sum_{l=1}^{k} \frac{y_{rank(l)}}{\log(l+1)}$$
$$NDCG@k = \frac{DCG@k}{\sum_{l=1}^{min(k,||y||_0}) \frac{y_{rank(l)}}{\log(l+1)}}$$

• **Precision@k:** the number of correct predictions considering only the top k elements divided by k

Label Completion: Experiment Design

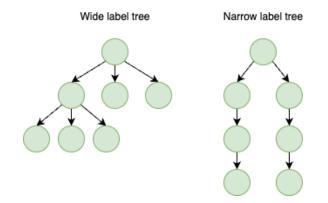
- **Assumption**: each instance in a test set contains a complete set of labels.
- Randomly drop labels:
 - \circ x% dropped labels
 - (x 100)% observed labels
 - $\circ \quad x = \{30, 50, 70, 90, 100\}$
- **Task**: predict *dropped* labels.
- Baselines: remove observed labels from predictions.
- HECTOR:
 - Leverage observed labels as an additional input to the decoder (path prefixes).
 - Remove observed labels from predictions.

Label Completion: Results (1/2)



Label Completion: Results (2/2)

- Outperform existing methods at XMLC task on EURLex dataset.
- Outperform existing methods at **label completion with 10%** observed labels across **all datasets**.
- HECTOR advantage increases as more initial labels are provided.
- Performance varies across datasets:
 - Challenges:
 - Deep taxonomies (PubMed)
 - Wide label trees (MAG-CS)
 - Advantages:
 - Faster convergence (EURLex)



Label Refinement: Experiment Design

- **Assumption:** labels from the **1**st level of a taxonomy are *observed*.
- **Task:** predict labels of level 2 and deeper.
- Proportion of level 1 labels in datasets:
 - MAG-CS: 55%
 - PubMed: 13%
 - EURLex: 42%
- Baselines: remove all level 1 labels from predictions.
- HECTOR:
 - Leverage level 1 labels as path prefixes: start decoding from the 2nd position.
 - Remove all level 1 labels from predictions.

Label Refinement: Results

Algorithms	MAG-CS			PubMed			EURLex		
	nDCG@1	nDCG@3	nDCG@5	nDCG@1	nDCG@10	nDCG@20	nDCG@1	nDCG@5	nDCG@10
XML-CNN	0.6836	0.6166	0.6177	0.9187	0.8699	0.8143	0.9024	0.8168	0.8194
AttentionXML	0.8654	0.8366	0.8391	0.9288	0.8919	0.8509	0.9204	0.8329	0.8408
MATCH	0.8424	0.7782	0.7707	0.9190	0.8740	0.8166	-	-	-
Transformer	0.6670	0.5930	0.5888	0.9215	0.8718	0.8139	0.8653	0.7688	0.7732
HECTOR	0.8906	0.8515	0.8511	0.9753	0.9108	0.8955	0.9860	0.9557	0.9566
HECTOR Ens.	0.9004	0.8645	0.8648	0.9777	0.9155	0.9001	0.9888	0.9597	0.9598

- Outperforms all competing methods by 2.8%-6.8% (at NDCG@1).
- Reaches almost 100% at NDCG@1 on EURLex.
- MAG-CS and EURLex: label refinement results are consistent with label completion results.
- **PubMed**: label refinement results are **better** than label completion results.
 - 10% level 1 labels are more helpful than 10% random labels.
 - Knowing where to start, HECTOR navigates through deep taxonomies with more confidence.

Conclusion

- Introduce a new paradigm for XMLC where labels are predicted as paths in hierarchical label trees;
- Explore the potential of the **full Transformer** model with encoderdecoder architecture for XMLC;
- Present a new model, HECTOR, which is able to capture the important portions of text for each label and directly leverages a label hierarchy;
- Demonstrate the **effectiveness** of our approach for **label completion** through an extensive evaluation on three real-world XMLC datasets.

Next Steps

Zero-Shot Extreme Classification: Introduction

- Classifiers assume that the label space is fixed.
 - Typically not the case, e.g., for technology monitoring.
- **Zero-shot learning** addresses the problem of *unseen* labels which are absent during the training time.
- **Few-shot learning** addresses the problem of *tail* labels prediction (i.e. labels which are underrepresented during the training time).
- Unseen and tail labels usually provide more recent and more specific information compared to head labels.

Zero-Shot Extreme Classification: Approach

- Generative approach to zero-shot learning:
 - Synthesize the relevant labels for a given test point *starting from the given prefix*.
 - Leverage label definition and its position in the taxonomy.
- HECTOR for few-shot learning:
 - Label completion for few-shot labels (< 5 training points)

Results on MAG-CS dataset:

	MeanRank	Recall@50
XML-CNN	25.5	0.1392
AttentionXML	19.3	0.2533
МАТСН	20.90	0.3303
HECTOR	20.59	0.4130

XMLC Benchmark for Scientific Document Collections

- It is still today unclear which **automatic labelling solution** should be adopted for the **TM platform**.
- Existing XMLC methods are mostly evaluated on datasets derived from Wikipedia and Amazon.
- Scientific and technical documents differ in terms of form and content.
- Task: develop a new **benchmark** for XMLC with a focus on **labelling scientific documents** collections.
- Implemented by an MSc student **Bhargav Solanki**

XMLC Benchmark for Scientific Document Collections

• Datasets:

- MAG, PubMed
- <u>OpenAlex</u> open catalog of the world's scholarly papers.

• Metrics:

- Performance: Prec@k, nDCG@k.
- Propensity-scored performance: PSPrec@k, PSnDCG@k place specific emphasis on performing well on rare labels.
- Label diversity score: diversity of labels predicted by the model across all examples.
- Efficiency: model size, training time, inference time.

Thank you!

Follow the Path: Hierarchy-Aware Extreme Multi-Label Classification

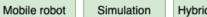
Path Completion

<u>Observation:</u> labels are assigned inconsistently in terms of their relative position in the taxonomy.

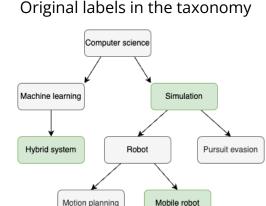
<u>Assumption</u>: if label ℓ_j is relevant for a document d_j , then *parent*(ℓ_j) is also relevant for the same document.

Original data point

The design of controllers for hybrid systems in a systematic manner remains a challenging task. In this case study, we apply formal modeling to the design of communication and control strategies for a team of autonomous robots to attain specified goals in a coordinated manner.



Hybrid system



Completed labels in the taxonomy

