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Highlights
Security Dynamics in Computer Science Technologies

• Quantitative framework for the assessment of security dynamics in technologies.
• Identification of 3 patterns among 20 computer-science technology categories:
• 1. Technological and security developments are not correlated.
• 2. Security gains more attention at a later stage of technological development.
• 3. Opinion on technology is associated with security development.
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A B S T R A C T
The quantitative study of security dynamics in computer-science technologies is essential for
understanding security-development patterns of information systems. Here, we specify and
investigate security dynamics as (i) the relation between technological and security develop-
ments, (ii) the security development, modeled as the evolution of security considerations among
technologies, and (iii) the effect of security development on the opinion given to technologies. We
perform a scientometric analysis on arXiv e-prints (𝑛 = 340 569) related to 20 computer-science
technology categories. Our empirical results are threefold. First, we provide evidence of a lack
of relation between the technological and security developments: while most categories follow a
sigmoid-growth curve of technological development, this latter is not a determinant of security
development. Second, we find a security-attention pattern: over the lifetime of categories,
security considerations appear more frequently, emphasizing that security gains more attention at
a later stage of technological development. Third, we find an opinion pattern: the experts’ opinion
related to each category is positively explained by the prevalence of security considerations.
These results emphasize new methods for understanding, modeling, and benchmarking security
dynamics of technologies, which brings new heuristics for considering changes related to the
security of information systems.

1. Introduction
The accelerating pace of technological development is continuously redefining information and communication

technologies (ICTs) [83]. Emerging technologies present a myriad of opportunities to enhance the efficacy and
efficiency of operations for all types of social organizations [15]. Yet, in such a fast-paced and complex context of
technological development, opportunities are undeniably also accompanied by threats [52, 8, 47].

Counter-measures to contain information-security threats have been widely investigated, developed, and im-
plemented. For instance, secure-by-design (SBD) engineering implies considering security as the first stage of
technological development [7]. Yet, research in security economics demonstrates that security is often ill-developed in
the early stages of product development [16]. The misaligned incentives between end-users and information-security
producers and providers, the high investment that information security requires and its engineering complexity hinder
security development among technologies [8, 16, 7].1

While factors limiting security development have been the subject of a growing body of literature, there is dearth
of knowledge regarding the actual security development among technologies and its relation with technological
development, which could shed light on how security evolves within systems. This is a central question when
considering the evolution footprint of security among technologies, a notion we define as security dynamics. We
therefore investigate three security dynamics of interest: (i) the relationship between technological and security
developments, (ii) the evolution of the attention towards security considerations embedded in those technologies, and
(iii) the effect of security considerations on the opinion towards technologies.2 We adopt a technology-mining approach
– i.e., scientometrics and its related methods – on 1 854 076 e-prints of the arXiv open-data repository (from August
14, 1991, until December 31, 2020). Out of this sample, we identify 340 569 e-prints related to 20 Computer-Science
Technology Categories related to Cybersecurity (hereafter, CSTCCs), on which we investigate three security dynamics
mentioned above. To the best of our knowledge, this work presents the first indicator for capturing security dynamics
in computer-science technologies.

Our results are threefold. First, we find empirical evidence of a lack of relationship between technological
development and security development. While most CSTCCs follow a sigmoid growth pattern of technological

ORCID(s):
1By security development, we mean the development of information security. This latter is the practice of protecting information through the

dependability of technology (in terms of privacy-preserving and confidentiality aspects, as well as the ability of technology to ensure the integrity,
availability, and non-repudiation of data). Information security typically operates through the mitigation of information risks that involve probability
prevention or reduction of unauthorized/inappropriate access of data, unlawful use, disclosure, disruption, deletion, corruption, modification,
inspection, recording, or devaluation of information [7].

2We define security considerations as employed semantics related to information security.
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development, their security development does not follow such a pattern. Moreover, the change rates of these two
patterns are uncorrelated. Second, we find empirical evidence of a security-attention pattern. For most CSTCCs, the
prevalence of security considerations grows with time, supporting the hypothesis that security is taken into account
to a greater extent at a later stage of technological development. Third, we find empirical evidence of an opinion
pattern. The prevalence of security considerations is positively correlated to the opinion, supporting the hypothesis
that CSTCCs with a greater prevalence of security considerations trigger a more favorable opinion. Also, its standard
deviation – the opinion dispersion – is negatively related to the opinion, supporting the hypothesis that consensus is
associated with a more favorable opinion.

These results emphasize unfolded central aspects related to the structural dynamics of security development
among computer-science technologies. Moreover, such elements constitute relevant and informative considerations
for developing security among technologies. We discuss how such enlightening considerations may be considered
for shaping social change in security-development guidelines and principles. More specifically, we suggest using
the quantitative evaluation performed in this work to create informative security-development benchmarks across
the technological development field and thus target specific security development according to weak links (i.e.,
technologies which perform poorly) in the domain.

The remainder of this article proceeds as follows. Section 2 grounds this research with a critical literature review.
Section 3 presents the theoretical framework and related hypotheses. Section 4 details the data and the methodology.
Section 5 presents the results. Section 6 discusses the limitations and sets a future work agenda. Section 7 serves as
the conclusion.

2. Related work
In this section, we review the methods developed for measuring the theoretical variables related to (i) technological
development, (ii) security development, and (iii) the relation between opinion mining and security. We emphasize
the research gaps that we exploit in this work through such a review process, giving relevancy to our approach. Such
gaps are the scarcity of (i) benchmarking indicators related to technological development within an inter-technologies
context, (ii) holistic indicators of security development, and (iii) how security considerations are associated with
opinion.
2.1. Assessment of technological development
Technological development (also called technological change) is the overall invention, innovation, and diffusion of
technologies [46]. Technological development undergoes the first stage of engineering origination (i.e., invention) of
one or various features of a technology, the second stage of practical implementation (i.e., innovation) of them, and
the last stage of commercialization or release (i.e., diffusion) of such technology throughout the market [80].

Numerous approaches, methods, and models have been developed to identify, assess, and forecast the afore-
mentioned stages of technological development (for an extensive literature review, see [26, 53, 39, 17, 29, 75]).
Among these approaches, a central one consists of modeling technological development as a general trend pattern
that follows an S-curve – i.e., a sigmoid curve – which depicts the development performance of technology through
time [57, 79, 80, 60, 22, 2, 5]. Such a model describes a life-cycle of technological development through three phases:
an introduction phase, a growth phase, and a maturity phase [76].

At the introduction phase of a technology, development performance changes occur relatively slowly. Such a pace
depends on the specific technology and its environment. However, it is not uncommon to witness years of gestation
before seeing an emerging technology achieving widespread acceptance and commercial success. By satisfying the
users’ needs of niche market segments, a novel technology improves efficacy and efficiency before reaching a broader
population of mainstream users [3]. Then, during the growth phase, the technology is exposed to the mass market.
As a result, the technology becomes more compelling, attracting more investment and incremental innovation (new
features). Such a growth phase – characterized by the migration of the technology from niche markets to mainstream
markets – leads to a swift proliferation of new features of the technology and more companies involved with the
technology [50, 72]. Lastly, as technology begins to mature, the pace of technological development typically slows
down as it approaches its performance limits and diffusion limits due to market share saturation [73, 1].
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Figure 1: S-curve of technological development. The y-axis can be interpreted as a technology-performance indicator, in which, for instance,
the diffusion process of a technology can be captured. Within the growth phase, an inflection point (projected into the x-axis, in dashed green) is
reached, and corresponds to the moment where the growth rate of technological development is diminishing, though still positive.

In practical terms, such an S-curve can be measured through various private- and open-source data indicators.
Past research has relied mainly on indicators such as bibliometric analysis related to scientific publications (i.e.,
scientometrics) [31, 45, 77], patents [21, 35, 69], industry-market indicators (job openings, trade registers), or a mix of
them [27, 54]. In this aspect, text-mining methods [21, 24, 41] and network analytics [57, 64] are particularly prolific.
For instance, concerning text-mining methods, Guo et al. (2019) analyze 1 666 scientific publications to detect trends
and hot-spots (i.e., hypes) in network technologies and information systems [37]. With a literature-growth approach and
a co-citation analysis, they find exponential patterns – capturing the introduction and the initial growth phases of the
S-curve – in technological diffusion and recurring themes related to specific categories. In another example, Priestley et
al. (2020) trace the growth curve of Web technologies between 1990 and 2013. By investigating a longitudinal dataset
of 20 493 Web-related US patents, they find that the accumulation of corporate Web inventions follows an S-shaped
curve [76]. Son et al. (2010) assess global trends in automation and robotics technologies concerning network-analytics
methods [84]. They identify main research topics and link them to the primary contributors by analyzing peer-reviewed
publications.

The great majority of these approaches have mainly been employed for specific technologies [29]. Yet, such
specific analysis impedes a broader investigation of a shared S-curve pattern of technological development within an
ensemble of technologies. To the best of our knowledge, no study has quantitatively investigated such a development
pattern among various technologies for comparison purposes, at least not for Computer-Science Technology Categories
related to Cybersecurity (CSTCCs). Consequently, there is a need to create a benchmark for technologies by a shared
development metric, as the absence of such a metric thwarts the technological development comparison among different
CSTCCs.
2.2. Assessment of security development
Assessing security-development indicators among computer-science technologies has been done through creation and
analysis of cybersecurity skills indexes (e.g., [18]), organizational development of cybersecurity programs (e.g., [36])
and job openings (e.g., [10]), cybersecurity risks (e.g., [44]), dynamics of cybersecurity incidents (e.g., [59]), evolution
of cybersecurity behaviors (e.g., [56]), and so on. For a systematic literature review, see [63].

However, while quantitative methods are widely applied to technological development analysis, to the best of
our knowledge, the quantitative investigation of a holistic, dynamic, and common metric for measuring development
patters of security among technologies still constitutes an unexplored domain in the scientific literature. Consequently,
there is a need to model a general security-development indicator to assess how security considerations evolve within
technologies.
2.3. Assessment of opinion mining given security considerations
Trend analysis is a central aspect of technology assessment and forecasting. It is used to capture development patterns
and thus to gauge the attention (i.e., the hype) that a community is giving to a technology [28]. However, trends do not
capture the opinion of this given community, as the above-mentioned qualitative approaches and their methods are, in
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essence, ignoring the experts’ opinion on a given technology. [49]. Yet, such experts’ opinion is an interesting indicator
for evaluating to what extent technology is believed to be relevant, effective, and efficient in a specific context [58].
As authors of academic works related to technology are mainly made up of engineers and scholars who evaluate – and
more than not also help develop – this same technology, they can be considered experts. Therefore, the semantics they
use to describe the technology can be analyzed and aggregated to classify their opinion towards this same technology,
complementing trend analysis. Capturing opinion is possible with quantitative methods such as sentiment analysis
[58].

While capturing the experts’ opinion on a given technology complements trend-analysis methods, investigating
which factors may influence such an opinion could bring interesting insights. For instance, the extent to which experts
emphasize security considerations attached to technology may influence their opinion about this same technology [74].
Yet, to the best of our knowledge, the extent to which the experts’ opinion on a given technology may be correlated
to the prevalence of security considerations they raise on this same technology has not been investigated. However,
such an investigation is relevant as it can shed light on how security is associated with the perception of a technology
– which is assuredly a critical aspect.

3. Theoretical framework and hypotheses
In this section, we ground our hypotheses related to the potential patterns of security dynamics that we want to test
for the ensemble of Computer-Science Technology Categories related to Cybersecurity (CSTCCs). We divide such
patterns into three categories: (i) the relationship dynamics between technological and security developments, (ii) the
dynamics of security attention, and (iii) the dynamics between opinion and security considerations.
3.1. Technological and security-development patterns
Before investigating the relationship between technological and security developments, we first need to model the first
one. As depicted in Section 2, the sigmoid function exhibits an initial exponential rate of technological diffusion, then
reaches an inflection point and settles into a phase of diminishing returns to scale, and finally saturates [80] – reaching
technological maturity (see Figure 1). Similar technological development evidence has been investigated in various
fields (e.g., [22, 13, 60]). Additionally, Rogers (2010) states that technological diffusion occurs within a social system
[80]. In this respect, the arXiv community is a typical social system in which e-prints related to technologies are
communicated through uploads on a shared repository. Furthermore, in many technical fields such as mathematics,
physics, and computer science, an important share of research papers are self-archived on the arXiv repository before
being submitted and subsequently presented or published either at a conference or in a peer-reviewed journal [86].
Therefore, we consider arXiv to be an adequate, relevant, and representative source for measuring the development
patterns through the count of scientific works per month related to a technical subject. Consequently, the monthly
number of uploads of e-prints related to CSTCCs can be used to assert whether technological development does indeed
follow a sigmoid growth pattern. Therefore, Hypothesis 1a:
H1a: The technological development of each CSTCC follows a sigmoid pattern.

Even if we observe idiosyncratic growth rates for each CSTCC, CSTCCs likely follow a shared sigmoid-like
development pattern. However, despite a theoretical background stating such claims, we are not aware of any
quantitative work investigating the presence of such a shared technological development pattern among CSTCCs.
Moreover, even if H1a is not directly related to security dynamics, testing it is a necessary first stage for testing H1b,
which is directly related to security dynamics.
The technological development of computer-science technologies encompasses a broad spectrum of engineering and
project-management steps, going from the analysis of novel usability needs to technical development up to the very
last deployment aspects of the technology [92]. In this whole technological development life-cycle, technical aspects
related to security considerations are evaluated, designed, and implemented [42]. These considerations are taken into
account – although within largely variable magnitudes, depending on the technological development context [7].

However, numerous scholars, policy-makers, and practitioners emphasized discrepancies among drivers of tech-
nological development on the one hand and security development on the other hand. For instance, researchers in
information-security economics highlighted that misaligned incentives between developers and end-users constitute
a significant barrier in the security development of technologies (e.g., [8, 7, 6, 9, 16]). Notably, Anderson & Moore
First Author et al.: Preprint submitted to Elsevier Page 4 of 24
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(2006) stated that incentives matter at least as much as technical aspects for the security development of large-scale
systems. In other words, the security failures of technologies arise when individuals who could fix them are not the
ones who suffer the costs of such failures [8]. Consequently, such a misalignment of incentives may tend to detach the
security development of CSTCCs to their technological life-cycle dynamics.

For instance, Anderson (2007) pointed out that software markets have some of the characteristics of a market
for lemons [9]. Following the concept of Akerlof (1970) [4], the author examines how the quality of information-
security products in the software market is degraded in the presence of information asymmetry between the buyers
and the sellers concerning the security efficacy of those same products. Should it be for security software, or the
security of software developed for other purposes, most users cannot to tell what is vulnerable (and which technology
is dependable) and how efficient (and dependable) is the information-security product in solving such a vulnerability
issue. Therefore, the buyers’ willingness-to-pay will shrink. Consequently, sellers won’t be incentivized to produce
better quality for less money – i.e., developers are not compensated for efforts to strengthen their code. Such a market
for lemons mechanism may then detach security development from other technological development aspects [9].

Similarly, market dynamics such as the need to secure business gaps – by launching innovative products on the
market as soon as possible – tend to put security-development aspects at a less considered matter. In other words,
sellers often forego security considerations by offering underdeveloped security technologies and then using clients as
continual beta testers for identifying and patching vulnerabilities [7]. Moreover, security aspects are often skipped in
the early stages of technological development as substantial investments are required to tackle such security aspects,
consequently decreasing profitability [8, 16]. Therefore, Hypothesis 1b:
H1b: The security development of a CSTCC is uncorrelated with its technological development.

In other words, the security development of CSTCCs likely follows a distinctive path compared to the technological
development path. However, despite a theoretical background stating such claims, there is no quantitative work
investigating the differences – and most importantly, the correlation – between technological and security development
among CSTCCs.
3.2. Security-attention pattern
In addition to investigating a potential lack of correlation between technological development and security develop-
ment, we argue that out of the bibliometric measure of security considerations depicted in e-prints – and previously
used as a proxy of security development –, a measure of security attention can be derived. Based on the dynamics
of the mean of security considerations, such a measure can shed light on the development of the attention given to
security among each CSTCC.

Analyzing the mean’s trend of security considerations is relevant when evaluating the extent to which the CSTCC
experts (i.e., the authors of e-prints) pay attention to security considerations in their fields of expertise. The evolution
of such a measure constitutes an informative indicator to gauge the dynamics of security considerations raised among
each CSTCC. The example of the security by design (SBD) engineering principle and its actual implementation
constitutes a relevant illustration for understanding what we mean by measuring the dynamics of security attention.
Information-security threats have brought fundamental engineering-perspective changes in the field of computer-
science technologies, such as developing technologies according to the SBD principle [19, 51]. Under SBD, the security
development of software and information systems is embedded within the technological development process [81].
Products, services, and capabilities are thus designed from the very beginning to be secure [19]. However, as stated
above, a product must be put on the market quickly to become profitable as fast as possible, and such attitudes thus
relegate security issues to a later phase of development [16]. These works indirectly suggest that security considerations
would grow only at a later stage of technological development. Therefore, Hypothesis 2:
H2: The security attention of each CSTCC increases over time.

Despite a theoretical background stating that economic factors hinder the SBD implementation [8, 7, 16], there
is no quantitative works that measure the dynamics of security attention. Therefore, testing this hypothesis will shed
light on the development of security considerations related to CSTCCs.
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3.3. Opinion pattern
Like investigating a potential security-attention pattern, assessing a possible opinion pattern brings a complementary
analysis to technological development.

Sentiment analysis (also called opinion mining) refers to the study of individual sentiment, typically captured by
the analysis of the employed semantics of different text sources and translated into computer-readable metrics with
the help of natural language processing (NLP). Researchers have widely used the method to analyze the sentiment
of a community towards a variety of topics from marketing, management, or finance – to name a few [58]. A central
assumption of opinion mining is that sentiment is the product of the translation of individuals’ judgment, thinking, and
attitudes towards a given topic [34, 20]. Hence, observing the sentiment constitutes a measure of the aforementioned
individual peculiarities (see [61]). Empirically speaking, the sentiment is also often used to predict market trends [12].
In the context of technology assessment, capturing the sentiment that experts – i.e., authors of e-prints – develop
towards a particular CSTCC might give insights into where their opinion towards the CSTCC currently stands. Even
though it is commonly admitted that researchers might be opinion-neutral in their work, they still use natural language
to describe their findings on technologies. Thus, they cannot escape the unavoidable tendency to express words and
ideas that are either partial or not towards the technology.

Interestingly, the sentiment relates to the prevalence of security considerations. Gurung & Raja (2016) show that
the prevalence of privacy and security aspects provided on a given topic effects individuals’ perceived risk concerning
this exact topic [38]. Yet, the connection between risk factors and sentiment is widely studied in multiple disciplines
(e.g., [20]). By capturing social consensus through sentiment analysis, Yang et al. (2016) showed that consensus
and perceived risk are related [89]. Moreover, Yang et al. (2015) show that technological uncertainty – captured by
sentiment analysis – determines (among other factors) the perceived risk [90]. Consequently, perceived risks, captured
by technological uncertainty and security concerns, are supposedly linked to a measure of sentiment. Therefore, the
prevalence of security considerations emitted by experts on a given CSTCC should be positively related to the sentiment
(i.e., opinion) that such experts have towards this same CSTCC. Therefore, Hypothesis 3a:
H3a: For each CSTCC, the experts’ opinion is positively related to its prevalence of security considerations.
Additionally, the iterative nature of both product engineering (through design thinking) and peer-reviewing of scientific
works (through design science) brings to the fore an incremental process helping the development of products and
innovations [85]. Such an incremental process eventually leads to a consensus on a given topic. For example, Dou
et al. (2017) and Lehrer & Wagner (2012) show that the opinion related to this exact product tends to converge
towards a consensus through a given product evolution [32, 55]. Similarly, Yüzügüllü and Deason (2007) show that
the technical maturity and market-readiness of technology are factors that facilitate the consensus of the community
on these same technologies [91]. Such convergence in opinion (i.e., a consensus) reflects a decreasing dispersion
(a decreasing standard deviation) of this same opinion [43]. Hence, we expect to uncover similar evidence in the
technology field in general and in scientific works related to technology development in particular. Consequently, the
experts’ opinion on a given CSTCC might be negatively associated with the extent to which such an opinion is polarized
(depicting a greater dispersion). In other words, the consensus (inversely related to the opinion dispersion) that experts
have on a given technology might be positively associated with the opinion emitted by these same experts on this same
technology. Therefore, Hypothesis 3b:
H3b: For each CSTCC, the experts’ opinion is positively related to its consensus.

Testing these two hypotheses allows to uncover and disentangle two elements of the experts’ opinion emitted on
each CSTCC: first by understanding the link between the prevalence of security considerations and opinion, and second
by highlighting the positive correlation between this opinion and the consensus within the community of experts.

4. Data and methods
In this section, we first present the empirical variables and how we measure them. These empirical variables – namely
the (i) e-prints, the (ii) security considerations, and the (iii) sentiment – are the ones we use to capture our constructs
– namely, the (i) technological development, (ii) security development, (iii) security attention, and (iv) opinion. We
then present the methodologies we use to test our hypotheses related to each construct.
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4.1. Data
We extract data from open scientific works (i.e., scholar articles consisting of working papers, preprints, technical
reports, post-proceedings, and publications) labeled e-prints and uploaded on the arXiv repository. This latter is a free
distribution service and open-access archive for academic articles related to various technical fields, including computer
science (uploaded e-prints are not peer-reviewed).3 First, we download the entire arXiv repository (1 858 293 files,
corresponding to 3TB of text in .pdf format) through a mirror of the database found on kaggle.4 The data encompasses
all e-prints uploaded since the inception of the arXiv repository (August 14, 1991) until December 31, 2020. Next, for
each Computer-Science Technology Categories related to Cybersecurity (CSTCC), we (i) count the number of e-prints
through time, (ii) assess the prevalence of security considerations present in these e-prints, and (iii) assess the opinion
expressed by authors.
4.1.1. e-prints
The empirical variable e-prints is the main variable as it encompasses (i) the statistics of scientific work uploads related
to each CSTCC – used as a proxy of technological development –, (ii) the text used for capturing security considerations
– a construct that is also subsequently used for capturing security attention –, and the opinion.

To consistently classify and archive all e-prints, arXiv representatives – composed of a scientific advisory board
– created a systematic category taxonomy.5 They determined this taxonomy with a Delphi-like method involving
expert members for each arXiv scientific field.6 This implies that authors who want to upload their e-prints on
arXiv must select the corresponding category. Then, arXiv moderators check the authors’ classification to ensure
consistency. We consider this 3-step classification to be robust as (i) the taxonomy is created through a consensus
reached by a panel of experts, (ii) authors have no apparent incentive to misclassify their work, and (iii) moderators
check the classification consistency. As e-prints are attached to various predetermined arXiv fields unrelated to
computer science (such as physics, mathematics, quantitative biology, quantitative finance, and economics), we filter
the arXiv predetermined fields to extract computer-science technologies, namely the computer science (denoted cs.)
repository. We apply a second filter, considering arXiv subcategories in the cs. fields that are directly associated
with information-security technologies. To determine which arXiv subcategories of the cs. repository are effectively
related to information-security technologies, we use the Defenses sections listed in the Information Security portal of
Wikipedia as a reference.7 Thus, we select the arXiv subcategories of the cs. repository whenever this subcategory
is also mentioned within the Wikipedia Defenses section.

From this 2-step selection procedure, 20 subcategories are retained. In the case of the cs. repository, the category
taxonomy substantially relies on the list of methodology and technology categories provided by the 2012 ACM
Computing Classification System.8 Therefore, we consider the 20 categories mentioned above as distinct CSTCCs.
We depict the list of these CSTCCs and their respective number of e-prints in Table 1 on page 8.

If the arXiv repository is nowadays regarded as an established platform amongst various scientific communities
for uploading their e-prints, it enjoyed no such popularity at its inception. Therefore, we cannot assume that the arXiv
platform depicts a constant attention rate related to each CSTCC. To circumvent this bias, we normalize the number
of e-prints related to each CSTCC by dividing the total number of e-prints per CSTCC per period (month) by the
corresponding amount of total e-prints (i.e., including all categories) of the arXiv repository per period (month).
Such a measure is depicted in Figures 2 and 3 on page 8. A preliminary analysis shows that, for the great majority of
categories, we either witness an exponential trend – depicted in Figure 2 (i.e., corresponding to the introduction and
the growth phases of the S-curve) – or a proper sigmoid trend – depicted in Figure 3 (i.e., corresponding to the three
phases of the S-curve).

3https://arxiv.org/
4https://www.kaggle.com/Cornell-University/arxiv
5https://arxiv.org/about/people/scientific_ad_board#advisory_committees
6https://arxiv.org/category_taxonomy
7https://en.wikipedia.org/wiki/Information_security
8https://arxiv.org/corr/subjectclasses
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arXiv categories Cluster name (CSTCC) Total count of e-prints With security considerations % of security considerations
cs.AI Artificial Intelligence 38 620 11 447 29.640
cs.AR Hardware Architecture 2573 971 37.738
cs.CC Computational Complexity 8492 1216 14.319
cs.CL Computation and Language 29 528 8536 28.908
cs.CR Cryptography and Security 19 784 14 952 75.576
cs.CV Computer Vision and Pattern Recognition 64 696 21 852 33.776
cs.DB Databases 6269 2341 37.342
cs.DC Distributed, Parallel, and Cluster Computing 14 955 5686 38.021
cs.DS Data Structures and Algorithms 18 269 3458 18.928
cs.GT Computer Science and Game Theory 7992 2279 28.516
cs.HC Human-Computer Interaction 8774 2753 31.377
cs.IR Information Retrieval 10 407 3216 30.902
cs.LG Machine Learning 94 024 30 142 32.058
cs.NE Neural and Evolutionary Computing 10 155 2649 26.086
cs.NI Networking and Internet Architecture 16 606 6826 41.106
cs.OS Operating Systems 652 303 46.472
cs.PL Programming Languages 5731 1937 33.799
cs.RO Robotics 16 187 6055 37.407
cs.SE Software Engineering 10 032 4109 40.959
cs.SY Systems and Control 18 347 6845 37.309

Table 1: arXiv categories (corresponding CSTCCs) and their respective count of e-prints, with and without security considerations. Not
surprisingly, the category cs.CR (Cryptography and Security) has a share of security considerations greater than 75%, which validates our method
for capturing security considerations; see subsection 4.1.2 on page 9. As almost all categories are serially correlated, descriptive statistics of the
normalized number of e-prints are not presented here (should be interpreted with care). Such statistics are available upon request.
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Figure 2: Normalized count of e-prints: computer vision and pattern recognition. The frequency is monthly. The plot clearly pictures the
introduction and growth phases of the S-curve (see Figure 1 on page 3).
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Figure 3: Normalized count of e-prints: networking and internet architecture. The frequency is monthly. The plot clearly pictures the three
phases of the S-curve, namely the introduction, growth and maturity phases (see Figure 1 on page 3).
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4.1.2. Security considerations
As previously defined, our construct named security considerations is related to (i) the technology’s dependability
in terms of privacy-preserving and confidentiality aspects, and (ii) the technology’s ability to ensure the integrity,
availability, and non-repudiation of data. To capture security considerations expressed in e-prints, we thus select
a set of keywords related to these concepts mentioned above. These relate to the well-known CIA triad (i.e.,
confidentiality, integrity, and availability), and the non-repudiation principle [23, 78] and are depicted in the
Information Security portal of Wikipedia.9 The list of keywords is: secure, security, safe, reliability, dependability,
confidential, confidentiality, integrity, availability, defense, defence, defensive, and privacy.

We then query the arXiv API to select e-prints that contain these keywords in either their title or abstract.
Subsequently, to extract the prevalence of security considerations among each CSTCC, we divide the number of e-
prints per CSTCC including these keywords, by the total number of e-prints per CSTCC. Figure 4 depicts how the
share of e-prints alluding to security has changed, illustrated by the CSTCC computer vision and pattern recognition.
A preliminary analysis shows that, for the great majority of categories, we witness (i) a diminishing dispersion and (ii)
an upward trend of the measure.
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Figure 4: Security considerations: computer vision and pattern recognition. This figure depicts the evolution of the prevalence of security
considerations, i.e., the e-prints containing security considerations divided by the total number of e-prints. The frequency is monthly. Due to the
Law of Large Numbers, the left-hand side of the plot – corresponding to more sparse data – does not show interesting properties. However, the
right-hand side depicts a diminishing dispersion, and – more importantly – an upward trend. Such a pattern is witnessed in the great majority of
categories, as depicted in the multi-plot of all security considerations measures (for each CSTCC) available in Figure 11 on page 23 (Appendix). As
for e-prints, almost all categories are serially correlated. Therefore, descriptive statistics of security considerations are not presented here as they
are to be interpreted with care. Such statistics are however available upon request.

4.1.3. Sentiment
To capture the opinion of authors related to each e-print attached to a given CSTCC, we employ sentiment analysis
by implementing a classical lexicon-based approach based on a labeled thesaurus (the NLTK sentiment lexicon of
Python, in English natural language) to classify the semantics of authors as either positive or negative [82].

To do so, we first clean and normalize every word in e-prints before transforming them into tokens (i.e., machine-
readable inputs). Cleaned tokens are obtained through standard NLP procedures such as (i) transforming all text in
GB English, (ii) removing special characters, stop words, punctuation, and lowering upper-cases. Then, we normalize
cleaned tokens through lemmatization (morphological analysis to transform tokens into their canonical form).

Subsequently, we apply a standard cumulative-sentiment function that classifies each token into either a positive
or negative sentiment before summing the result for each e-print. The final sentiment score occupies a range from
−1 (for the worst sentiment) to 1 (for the best sentiment), giving a normalized sentiment score for each e-print. The
scores of e-prints related to the same CSTCC are then cumulated for each month (for the publication date and not the
upload date). Statistics depicting the sentiment distribution are then available for each CSTCC and for each month.
Figure 5 shows an example of the evolution of the sentiment for the CSTCC computer vision and pattern recognition.
Descriptive statistics of the sentiment for each CSTCC are listed in Table 2.

9https://en.wikipedia.org/wiki/Information_security#Key_concepts
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Figure 5: Distribution of opinion: computer vision and pattern recognition. The median is plotted with dots and the second and third quartiles
are plotted with lines. The frequency is monthly. Similarly to Figure 4, the plot shows no interesting properties on his left-hand side as the data are
sparse. However, a decreasing dispersion (due to the Law of Large Numbers) – and more importantly – a downward trend is perceptible. A multi-plot
of all opinion measures (for each CSTCC) available Figure 11 on page 23 (Appendix).

arXiv categories 𝐌𝐞𝐚𝐧 𝐌𝐞𝐝𝐢𝐚𝐧 Std Dev 𝐒𝐤𝐞𝐰𝐧𝐞𝐬𝐬 𝐊𝐮𝐫𝐭𝐨𝐬𝐢𝐬
cs.AI −0.002 −0.001 0.006 −1.341 2.809
cs.AR −0.001 0.000 0.007 −1.592 7.664
cs.CC −0.009 −0.009 0.005 −0.967 3.658
cs.CL 0.004 0.005 0.003 −1.038 3.462
cs.CR −0.006 −0.005 0.014 −10.379 140.804
cs.CV −0.003 −0.002 0.007 −2.053 7.548
cs.DB 0.001 0.001 0.006 −0.077 9.936
cs.DC −0.001 0.000 0.005 −1.570 11.395
cs.DS −0.004 −0.003 0.005 −0.008 9.114
cs.GT 0.002 0.003 0.008 −1.379 14.532
cs.HC 0.004 0.005 0.007 −1.261 5.772
cs.IR 0.006 0.007 0.007 −3.640 22.239
cs.LG −0.002 −0.001 0.006 −1.737 10.354
cs.NE −0.003 −0.001 0.007 −2.538 13.560
cs.NI −0.002 −0.001 0.005 −1.774 13.112
cs.OS −0.003 −0.001 0.010 −1.441 4.284
cs.PL 0.002 0.002 0.006 −3.476 40.685
cs.RO −0.003 −0.002 0.007 −3.337 18.244
cs.SE −0.001 0.000 0.006 −1.022 5.650
cs.SY −0.005 −0.005 0.004 −0.529 7.064

Table 2: Descriptive statistics: monthly opinion. This table displays summary statistics of the monthly opinion for each CSTCC.

4.2. Methods
The following subsection presents the methodologies employed to test our hypotheses. For all methods, we define a
set Ω𝑥 for all CSTCC, 𝑥:

Ω𝑥 =
{

𝑡 ∣ 𝑡 ≤ 𝑁𝑥, 𝑡 ∈ ℕ∗} (1)
where 𝑁𝑥 is the number of months comprised between the first and the last e-print for 𝑥.

4.2.1. Technological and security-development patterns
To model the technological development, we apply a Levenberg-Marquardt algorithm of non-linear optimization for
fitting a noiseless sigmoid curve on each CSTCC development (i.e., a clean technological development trend – based on
the S-curve theory – to be fitted to the historical data points of e-prints) [65]. We use the Python scipy package and
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its .optimize.curve_fit method to fit a sigmoid function into each CSTCC sample.10 We made this choice because
the sigmoid function precisely depicts S-shaped curve characteristics: it is a bounded, differentiable, and real function
defined for all real input values and has both a non-negative derivative at each point and precisely one inflection point
[40]. Therefore, we define the technological development function, 𝜎𝑥(𝑡), with 𝑡 ∈ Ω𝑥,

𝜎𝑥(𝑡) =
𝐿𝑥

1 + 𝑒−𝑘𝑥(𝑡−𝑡0𝑥)
(2)

where:
– 𝑡0𝑥 is when the inflection point is reached (corresponding to maximum of the first derivative of the

function, i.e., the maximum growth rate of technology development [80]);
– 𝐿𝑥 is the curve’s maximum limit value (i.e., lim

𝑡→+∞
𝜎𝑥(𝑡) = 𝐿𝑥) [88, 80];

– 𝑘𝑥 is the sigmoid growth rate or steepness of the curve [88, 80].
For every time-series of e-prints related to a CSTCC, 𝐷𝑥, the .optimize.curve_fit method finds the optimal

values of the parameters 𝐿𝑥, 𝑘𝑥 and 𝑡0𝑥 and their standard errors (by minimizing non-linear least-squares errors).11
If fitting such a sigmoid function to our datasets yields compelling metrics – i.e., (i) if 90% of data-points fall within
the boundaries of the standard error of the regression, and (ii) if the goodness-of-fit statistic, the reduced chi-squared,
𝜒2
𝜈𝑥

≊ 1 –, then H1a would be verified for a given 𝑥.12

We proceed to a multivariate time-series analysis for each 𝑥 concerning the security development and its relationship
with technological development. More precisely, we fit a multivariate autoregressive model to each 𝑥, which comprises
both autoregressors (of order 𝑝𝑥 ∈ Ω𝑥) of the dependent variable – i.e., the security development, 𝑆𝑥 –, and regressors
(of order 𝑞𝑥 ∈ Ω𝑥) of the independent variable – i.e., the technological development,𝐷𝑥. Both orders are determined by
using the selection process of the Akaike info criterion [11]. In other words, we investigate if the security development
of a given CSTCC is explained by the past values of its technological development. We model such a multivariate
autoregressive model to each 𝑥 as follows,

𝑆𝑥,𝑡 = 𝜁𝑥 +
𝑝𝑥
∑

𝑖=1
𝜙𝑥,𝑖𝑆𝑥,𝑡−𝑖 +

𝑞𝑥
∑

𝑗=1
𝜃𝑥,𝑗𝐷𝑥,𝑡−𝑗 + 𝑢𝑥,𝑡 (3)

where:
– 𝑆𝑥 is the time series of security development, 𝑆𝑥,𝑖 is its value at time 𝑖, and 𝜙𝑥,𝑖 is its autoregressive

parameter;13

– 𝐷𝑥 is the time series of technological development, 𝐷𝑥,𝑗 is its value at time 𝑗, and 𝜃𝑥,𝑗 is its regressor
parameter;

– 𝜁𝑥 is a constant;
– 𝑢𝑥,𝑡 is the time-series of error terms (i.e., 𝑆𝑥,𝑖 − �̂�𝑥,𝑖).

10The .𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒.𝑐𝑢𝑟𝑣𝑒𝑓𝑖𝑡 method is a method for minimizing objective functions, possibly subject to constraints. It includes solvers for non-
linear problems (with support for both local and global optimization algorithms), linear programming, constrained and non-linear least-squares, root
finding, and curve fitting (see, https://docs.scipy.org/doc/scipy/reference/optimize.html).

11Non-linear least squares is the form of least squares analysis used to fit a set of 𝑣 observations with a model that is non-linear in 𝑤 unknown
parameters (𝑣 ≥ 𝑤). The basis of the method is to approximate the model by a linear one and refine the parameters by successive iterations.

12In our case, the standard error of the regression is captured by computing the squared root of the reduced chi squared, denoted as 𝜒2
𝜈 . The

𝜒2
𝜈 statistic, also known as the mean squared weighted deviation (MSWD), is used as a goodness-of-fit metric. This statistic can be interpreted as

follows: a 𝜒2
𝜈 ≫ 1 indicates a poor model fit. A 𝜒2

𝜈 > 1 indicates that the fit has not fully captured the data (or that the error variance has been
underestimated). In principle, a value of 𝜒2

𝜈 around 1 indicates that the extent of the match between observations and estimations is in accord with
the error variance. A 𝜒2

𝜈 < 1 indicates that the model is overfitting the data: either improperly fitting noise or overestimating the error variance [14].
13NB: As we capture security development through the dynamics of security considerations, here, 𝑆𝑥 is used interchangeably for both security

development and security considerations.
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Such multivariate autoregressive models are estimated through ordinary least squares (OLS). As time-series 𝑆𝑥and 𝐷𝑥 have their respective seasonality for each 𝑥, we proceed to a seasonal adjustment by using the Seasonal and
Trend decomposition using Loess (STL) method [25]. Also, we proceed to a logarithmic transformation of the above-
mentioned series as they often present exponential growth [11]. Finally, as these time-series are trended, we need to
stationarize them through respective differentiation of order 𝐼𝐷𝑥

(𝑛) and 𝐼𝑆𝑥
(𝑚), where 𝑛 and 𝑚 ∈ ℕ∗ [11].

If the model presents compelling performance metrics – i.e., adjusted 𝑅2 –, and at least one statistically significant
and positive estimator for a regressor of the independent variable (i.e., the technological development), then H1b would
be verified.14

4.2.2. Security-attention pattern
To capture the security-attention pattern, we compute a rolling mean, Γ, of security considerations to capture the
mean’s trend of such a variable. In other words, for each CSTCC, we compute the annual mean trend of the share of
e-prints that encompass security aspects. We model the rolling mean for each 𝑥 as follows,

Γ𝑆𝑥,𝑡
= 1

12

𝑡
∑

𝑖=𝑡−11
𝑆𝑥,𝑖 (4)

Suppose such a rolling mean of the prevalence of security considerations displays an increasingly positive trend. In
that case, it will support an increase in the prevalence of security considerations over time. Thus, H2 would be verified.
4.2.3. Opinion pattern
We analyze the determinants of the experts’ opinion – i.e., the author’s opinion – by examining the effect of two
variables on this same opinion. The first is the variable security considerations (H3a), while the second is the standard
deviation of the opinion as a measure of opinion dispersion (H3b).

To test H3a and H3b, we use the cross-sectional approach of Fama & MacBeth [33]. This method, originally
developed to estimate both market-risk exposures and risk premia of assets, is a two-pass estimation. We use the
second pass, a sequence of cross-sectional OLS regressions at each month 𝑡, with 𝑡 ∈ Ω𝑥, for an 𝑥 of the form,

𝑦𝑥 = 𝛼𝑥 + 𝛽𝑥𝜂𝑥 + 𝛾𝐱𝐙𝐱 + 𝜖𝑥 (5)
where:

– 𝑦𝑥 is a measure of opinion;
– 𝛼𝑥 is a constant;
– 𝜂𝑥 is the variable of interest (i.e., the prevalence of security considerations), and 𝛽𝑥 is its estimator;
– 𝐙𝐱 is a matrix of additional controls, and 𝛾𝑥 is a vector of estimators;
– and 𝜖𝑥 is the error term.

Next, we consider the estimated time series of 𝛽, 𝛽, to test whether they significantly depart from zero. In addition,
we correct for serial correlation and heteroskedasticity in 𝛽 with Newey-West’s adjustment method [67].

We project the time-series of parameters on a constant and extract the covariance matrix of errors that we adjust to
retrieve the standard errors. As the procedure of [67] implies specifying ahead the number of lags, we also use the non-
parametric approach of [68] with automatic lag selection. Despite the small size of the cross-section (20 CSTCCs), the
large time-series dimension still permits statistical inference.15 Finally, we consider the unavailability of some CSTCCs
at the beginning of our sample and restrict the estimation to a period starting in November 2002, when the cross-section
reaches 15 simultaneous observations for the first time (for a total of 217 time-observations in our sub-sample). To
proxy for the instantaneous opinion, we consider, in turn, the median and mean of the aggregated opinion. Finally, to
control that our results are not driven by the numerator or denominator of the prevalence of security considerations,
we control the number of e-prints with security considerations and the total number of e-prints, respectively.

14Before interpreting the results, we verified that the time-series of 𝑢𝑥,𝑡 is not (i) serially correlated and (ii) is not heteroskedastic [11]. Such
statistics are available upon request.

15In fact, in their study, Fama and MacBeth (1973) use a cross-section of only 20 portfolios.
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5. Results
In this section, we present the results of applying specified methods (Section 4) we use to test our hypotheses (Section
3). H1b, H2, H3a, and H3b are verified for all Computer-Science Technology Categories related to Cybersecurity
(CSTCCs), while H1a is verified for the great majority of CSTCCs. Our Python script is available upon request.
5.1. A sigmoid trend as a technological development pattern
Table 3 shows the metrics and parameter values of non-linear regressions that fit a sigmoid function to our data.

arXiv categories 𝜒𝟐
𝜈 𝐒𝐄 𝐋 𝐤 𝐭𝟎

cs.AI 10.062 3.172 49 908.902 0.015 2071
cs.AR 1.889 1.375 1297.227 0.016 2065
cs.CC 2.588 1.609 0.489 0.032 2004
cs.CL 12.145 3.485 5.568 0.039 2019
cs.CR 3.013 1.736 10.783 0.015 2028
cs.CV 4.966 2.228 13.626 0.037 2019
cs.DB 2.454 1.567 0.461 0.025 2010
cs.DC 2.178 1.476 1.665 0.020 2015
cs.DS 2.788 1.670 1.273 0.037 2009
cs.GT 1.969 1.403 0.524 0.054 2009
cs.HC 2.275 1.508 1766.652 0.020 2051
cs.IR 2.137 1.462 8.690 0.015 2031
cs.LG 12.952 3.599 12 463.478 0.030 2039
cs.NE 3.042 1.744 1.298 0.025 2016
cs.NI 2.383 1.544 1.125 0.046 2008
cs.OS 0.893 0.945 78.830 0.007 2115
cs.PL 2.712 1.647 0.423 0.022 2011
cs.RO 3.762 1.940 6.918 0.032 2022
cs.SE 3.297 1.816 0.855 0.025 2013
cs.SY 10.444 3.232 2.963 0.031 2018

Table 3: Sigmoid fits of monthly normalized and aggregated number of e-prints per CSTCC. This table displays the goodness-of-fit measures
(i.e., the 𝜒2

𝜈 , and the regression standard error (SE)), and parameters of the sigmoid fits of the total normalized e-prints per CSTCC. The parameter
𝑡0 indicates the year in which the maximum growth rate of the CSTCC is reached.

The results are compelling: out of the 20 CSTCCs, 15 exhibit 𝜒2
𝜈 > 1, 5 exhibit 𝜒2

𝜈 ≫ 1, and 1 exhibits 𝜒2
𝜈 < 1.16

Therefore, the sigmoid function fits our observed data for 15 different CSTCCs. The unsatisfactory results (i.e., fits
that yield a 𝜒2

𝜈 < 1 and a 𝜒2
𝜈 ≫ 1) can be explained as follows. The only fit that yields a 𝜒2

𝜈 < 1 is cs.OS. Such a
poor fit is results from a high dispersion (important standard deviation) of the cs.OS data; a high dispersion due to
the sparsity of the data (in fact, only 652 e-prints have been uploaded for the whole history of the arXiv repository).
Concerning the fits that yield a 𝜒2

𝜈 ≫ 1, we systematically witness the start of the sigmoid function of technology
development without witnessing the inflection point yet. This means that, for some cases, the Levenberg-Marquardt
algorithm struggles to calibrate (optimize) the parameters. CSTCCs concerned by this issue are (i) cs.AI, (ii) cs.CL,
(iii) cs.LG, and (iv) cs.SY. Figure 6 on page 14 shows the fit of a typical sigmoid growth pattern onto the CSTCC
cs.DS, while Figure 7 on page 14 shows the fit of a typical exponential growth pattern onto the CSTCC cs.CV; this
exponential rise can be regarded as the left side (i.e., beginning) of a sigmoid growth pattern. Figure 8 on page 14
normalizes all above-mentioned fits for comparison purposes, while Figure 12 on page 24 plots the sigmoid fits for all
CSTCCs. Hence, H1a is verified for at least 15 CSTCCs, which exhibit a common development pattern that follows
a sigmoid function. Concerning the above-mentioned CSTCCs that yield a 𝜒2

𝜈 ≫ 1, we still witness an exponential
growth pattern that coincides with the beginning of a sigmoid function. If we cannot confirm that these five CSTCCs
will automatically follow a sigmoid technology-development growth, we cannot reject this hypothesis either. Such
results support the theory that most CSTCCs follow a typical S-curve pattern of technology development [80].

16i.e., the different 𝜒2
𝜈 lay within the same order of magnitude than 1, and are greater than one for 15 CTSCCs out of 20.
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Figure 6: Sigmoid fit of e-prints: data structures and algorithms. The normalized e-prints are in blue, and the sigmoid fit (equation 2) is in in
red. We additionally plot the inflexion point (vertical green dashed segment). We report the parameters of the sigmoid fit, their standard errors in
parenthesis and the 𝜒2

𝜈 . The frequency is monthly.
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Figure 7: Beginning of sigmoid growth of e-prints: computer vision and pattern recognition. This figure depicts the normalized e-prints
(blue) and the sigmoid fit (equation 2) is in red. We report the parameters of the sigmoid fit, the parameters, their standard errors in parenthesis and
the 𝜒2

𝜈 . The frequency is monthly. In contrast to Figure 5, the inflection point (i.e, 𝑡0) has been reached around 2019.
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Figure 8: Normalized fits of sigmoid functions. The sigmoid fit is normalized through a division by its maximum. We plot all CSTCCs and
the frequency is monthly. If we draw a 45° line starting from the upper-right corner (where all fits converge) to the bottom right, we can visually
segregate CSTCCs that have reached their inflection point (above the line) from CTSCCs which have not reach their inflection point (under the line).
Such a line is not represented on this plot for a better visualisation. Such a segregation can also be determined by analyzing 𝑡0 of Table 3.
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5.2. Security development is uncorrelated to technological development
We report the results of the tests of H1b in Table 4. With a multivariate time-series regression approach, we test the
relation between the security development, 𝑆𝑥,𝑡, and the technological development, 𝐷𝑥,𝑡, across CSTCCs, 𝑥. There is
no autocorrelation and heteroskedasticity of the error term 𝑢, and this for all 𝑥 (hese tests are available upon request).
We document a lack of statistically significant relation between 𝑆𝑥,𝑡 and 𝐷𝑥,𝑡: the statistical significance remains well
above the 5% threshold for the great majority of regressors of 𝐷 (i.e., 𝑞 ∗∗= 0,∀𝑞, 𝑥). Moreover, for the case of
statistically significant regressors of 𝐷, their estimators are systematically of low magnitude and are well within the
SE of regression. This makes us confident that technological development does not explain security development.
Hence, H1b is verified for all CSTCCs.

𝑆𝑥,𝑡 𝐷𝑥,𝑡 Adjusted 𝑅2 SE regression AIC Sum resid2 F-stat𝑝𝑥 𝑝∗∗𝑥 𝐼𝑆𝑥 interpolated ratio 𝑞𝑥 𝑞∗∗𝑥 𝐼𝐷𝑥

𝑆𝑥,𝑡

cs.AI 12 7 1 0.04 1 0 2 0.419 0.099 -556.9 2.98 18.63
cs.AR 12 8 1 0.23 2 2 1 0.448 0.139 -272.0 4.69 15.88
cs.CC 12 10 1 0.24 1 0 1 0.478 0.060 -976.5 1.24 25.96
cs.CL 12 8 1 0.02 1 0 2 0.436 0.094 -571.2 2.65 19.46
cs.CR 12 5 1 0.12 1 0 1 0.508 0.095 -524.7 2.47 23.82
cs.CV 12 8 1 0.15 1 0 3 0.569 0.111 -401.6 3.07 27.79
cs.DB 12 7 1 0.07 1 1 1 0.480 0.113 -378.8 3.12 19.26
cs.DC 12 8 1 0.03 1 0 1 0.508 0.104 -421.9 2.64 21.41
cs.DS 12 8 1 0.22 1 0 1 0.419 0.075 -783.8 1.81 19.78
cs.GT 12 8 1 0.11 1 0 1 0.403 0.107 -374.6 2.54 13.28
cs.HC 12 10 2 0.14 1 0 2 0.739 0.140 -266.8 4.78 56.87
cs.IR 11 6 1 0.06 1 0 2 0.624 0.115 -373.7 3.24 36.74
cs.LG 12 8 1 0.09 1 0 2 0.420 0.105 -448.3 2.88 16.32
cs.NE 12 7 1 0.11 2 0 1 0.549 0.111 -402.1 3.07 24.02
cs.NI 12 9 1 0.09 7 4 1 0.398 0.111 -411.3 3.15 10.55
cs.OS 12 4 1 0.35 2 1 1 0.431 0.147 -241.4 5.28 14.93
cs.PL 12 8 1 0.20 2 0 1 0.437 0.099 -544.8 2.95 18.39
cs.RO 12 5 1 0.23 1 0 1 0.350 0.104 -420.8 2.60 11.54
cs.SE 12 8 1 0.11 2 0 1 0.475 0.105 -418.6 2.65 17.60
cs.SY 12 4 1 0.26 1 0 2 0.379 0.079 -420.1 1.11 10.02

Table 4: Multivariate time-series regression of security development. This table lists the respective (i) autoregression order, 𝑝𝑥, and regression
order, 𝑞𝑥, (ii) number of statistically significant (up to 𝑝 > 0.05) autoregressors, 𝑝∗∗𝑥 , and regressors, 𝑞∗∗𝑥 , and (iii) the degree of differentiation, 𝐼𝑆𝑥and 𝐼𝐷𝑥

. We also report the interpolated ratio of 𝑆, as these time-series cannot present null values (otherwise, the share of security considerations
would be zero). To fulfill missing values, we perform a linear interpolation between concerned data points. Regression metrics are on the right.

5.3. Security-attention is increasing over time
Figure 9 shows the rolling mean (equ. 4) of the prevalence of security considerations (i.e., the security attention).

Figure 9: Multi-plot of security attention
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All CSTCCs display positive trends, depicting an increase in the prevalence of security considerations over
time. Hence, H2 is verified. We find empirical evidence of a security-attention pattern: the prevalence of security
considerations grows for all CSTCCs over time – supporting the hypothesis that security considerations are gaining
more attention at a later stage of technological development.
5.4. Opinion determined by security considerations and consensus
We report the results of the tests of H3a and H3b in Table 5. We test the relation between the instantaneous and
aggregate measure of opinion and the prevalence of security considerations across CSTCCs (H3a) with a Fama-
Macbeth approach. In all specifications, we document a significant relation that holds after the Newey-West adjustment
(bandwidth ranging between 1 and 5, and truncated for the lag selection). More specifically, in the parsimonious version
of the model, the prevalence of security considerations is significant at the 1% level (t-stats of 4.00 and 3.37 for the
mean and the median, respectively). These results are robust to including the (log) number of e-prints and e-prints
containing security considerations. The economic significance remains close and the statistical significance remains
well below the 1% threshold. Thus, we rule out the possibility that our results are driven by either the numerator or the
denominator used to construct the variable of interest. Moreover, given that we employ a cross-sectional methodology,
these specifications also discard the possibility of a spurious time-effect as an explanation for our results. Interestingly,
the point estimates for the two control variables are negative and significant at the 1% level in all but one specification
(significant at the 5% level). This makes us confident that the prevalence of security considerations is different from the
individual and absolute number of e-prints, either concerning the number of e-prints containing security considerations
or the total number of e-prints. Hence, (H3a) is verified. The experts’ opinion on a given CSTCC is positively related
to their security attention expressed on the same CSTCC.

Mean opinion
Prevalence of security considerations ×104 2.54 2.69 3.98 1.36 1.22 -6.80

(4.38) (4.30) (6.21) (2.26) (1.95) (-4.64)
[4.00] [4.00] [5.44] [2.20] [1.96] [-2.73]

Opinion 𝜎 -0.30 -0.22 -0.23 -0.25 -0.21 -0.16
(-9.10) (-7.17) (-7.60) (-7.89) (-6.20) (-4.31)
[-8.82] [-6.58] [-7.00] [-7.57] [-5.81] [-3.72]

Log (# e-prints with security considerations) ×104 -8.27 -6.40 -8.96
(-4.56) (-4.02) (-5.18)
[-5.14] [-4.04] [-5.03]

Total -22.00 -15.91 -41.50
(-3.68) (-3.69) (-6.62)
[-3.22] [-3.27] [-3.98]

Average 𝑅2 0.05 0.12 0.11 0.13 0.19 0.19 0.19 0.25 0.34
Median opinion

Prevalence of security considerations ×104 1.90 1.20 2.99 1.11 0.92 -7.32.
(3.54) (3.39) (4.72) (1.98) (1.56) (-4.92)
[3.37] [3.21] [4.24] [1.95] [1.61] -[2.85]

Opinion 𝜎 -0.14 -0.11 -0.12 -0.13 -0.10 -0.05
(-5.15) (-3.67) (-4.05) (-4.50) (-3.18) (-1.37)
[-4.91] [-3.41] [-3.71] [-4.24] [-2.93] [-1.18]

Log (# e-prints with security considerations) ×104 -6.44 -5.37 -8.04
(-3.86) (-3.24) (-4.46)
[-4.39] [-2.86] [-3.84]

Total -16.04 -12.13 -41.01
(-2.80) (-2.13) (-6.55)
[-2.27] [-2.01] [-3.78]

Average 𝑅2 0.05 0.12 0.11 0.09 0.16 0.16 0.15 0.22 0.32

Table 5: Cross-sectional regressions average of mean and median opinion. This Table reports the time-series average of parameters from
cross-sectional regressions of the mean and the median opinion. The explanatory variables are the prevalence of security considerations, standard
deviation of opinion, (log) number of e-prints with security considerations, and (log) number of e-prints. We report un-adjusted t-statistics in
parenthesis, and Newey-West (1994) t-statistics in square brackets. We additionally report the average 𝑅2, for each specification. The sample period
is November 2002 – November 2020 and the number of time-series observations is 217.

In a final specification, we include the standard deviation of the sentiment (i.e., opinion) as an explanatory variable.
We obtain similar orders of magnitude for the estimate and a statistical significance that remains at, or close to, the
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usual significance levels. When we consider this variable as a control, it does not modify the results. When we consider
it as a variable of interest, the estimates are highly significant and negative (adjusted t-statistic up to −8.82 when
the mean is used as a dependent variable). These results align with those of the financial literature. Such a negative
relationship between opinion dispersion (of e.g., analysts who provide price targets and recommendations for stocks)
and actual stock returns is well documented [30] and explained by theoretical asset pricing models [48]. Hence, (H3b)
is verified: The experts’ opinion on a given CSTCC is positively related to the level of consensus on the same CSTCC.
Consequently, we find empirical evidence for two contemporaneous determinants of the opinion towards the CSTCCs.
First, the opinion expressed in e-prints is positively related to the prevalence of security considerations. Second, we
find that consensus amongst the community is positively related to the opinion (standard deviation of the opinion is
negatively related).

6. Discussion
Our results provide relevant insights in terms of practical implications and future work. Sub-section 6.1 offers practical
implications for organizations undertaking acquisitions and investments in different Computer-Science Technology
Categories related to Cybersecurity (CSTCCs). Sub-section 6.2 lists a promising research agenda for future work,
notably for security-dynamics forecasting.
6.1. Practical implications
First, the sigmoid pattern of technological development – systematically observed for the great majority of the 20
CSTCCs under scrutiny – provides interesting hints for (i) benchmarking CSTCCs’ development among each other,
and (ii) subsequently forecasting the development of technologies in the short and medium terms. Knowing when
a CSTCC is likely to reach its inflection point of growth is interesting to anticipate a CSTCC’s development curve’s
slowing down. Subsequent analyses of such a decrease in growth may be used as an indicator of (i) technology maturity
[80], and (ii) precaution to foresee potential technological obsolescence [71]. Such indicator may help to prioritize
investment and acquisition of technologies with respect to their maturity and obsolescence levels. Making investment
and acquisition choices related to technologies is always an opportunity-cost challenge. Knowing how a technology
goes through different growth phases can provide considerable assistance in timing investment decisions appropriately
[62]. Information about when and at which pace a CSTCC’s growth is likely to slow down – also in comparison to other
technologies developing concomitantly – is critical to set budget and investment and acquisition priorities. For instance,
organizations willing to invest in emerging technologies are likely to prioritize technologies that have not reached their
inflection point, will organizations willing to acquire technologies are likely to prioritize mature technologies that are
relatively far from reaching their obsolescence.

Second, the lack of a significant relationship between technological development and security development – as
well as the fact that security considerations arrive at a later stage of technological development – confirms previous
intuitions about how ill-defined security development is among computer-science technologies [19, 51, 16, 6, 70].
Such empirical findings put to the fore indicators of how important security is considered among the technological
development pipeline. More practically speaking, such findings are worth considering for benchmarking purposes
to evaluate where the security development stands among different technologies – a contemporary question that is
gaining momentum within the technology domain [7]. Decision-makers who invest or acquire technologies must grasp
how security is considered within technologies of interest. This aspect is critical, especially when considering that
security has often been sacrificed for revenue or user-base growth [7]. How much attention has been paid to security
considerations during technological development? When did these security considerations start getting momentum?
Our approach recognizes that such security-related aspects are uncertain without proper measurements. Therefore, we
modeled these aspects to shed light on security considerations. Based on theses aspects, our security indicators may
help IT decision-makers (such as CISOs) to prioritize investment or acquisition. Under a societal change perspective,
such findings give some relevant thinking grounds to how aspects related to security are effectively envisioned and
considered within the overall engineering process. The question of how important security development is among
economic and technological development factors – and how such a question might be considered going forward –
constitutes a conceptual debate that is worth reconsidering.

Third, to complement the investigation of the technological and security developments per se, we also assessed
experts’ opinion on technology. Our approach enables us to investigate the extent to which security considerations
affect (i) the opinion, and (ii) the opinion consensus towards a given CSTCC. Again, such metrics can then be used
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as a benchmark among CSTCCs – an indicator relevant for decision-making related to acquisitions and investments in
specific technologies. For instance, similarly to financial assets, the opinion given to specific technologies may reveal
crucial in pricing these same technologies based on the perceived security risks. There is little doubt that investment
and acquisition insights and subsequent technology pricing models can be derived from such results. The relation of
the standard deviation of opinion with that of the security considerations is another striking example that security risk
associated with technology development can be priced thanks to opinion mining. The consistency and the stability of
the reported metrics over short to medium periods are essential for technology investment and acquisition.
6.2. Limitations and future work
We measured the amount of scientific work produced through time as a proxy for technology development according
to abundant bibliometric literature (e.g., [31, 45, 77]). More specifically, we measured the number of e-prints uploaded
through time in the arXiv repository for each CSTCC. With this measure, we aimed to capture the amount of attention
that a given community (the scientific community) provides to a given CSTCC. In the field of computer science, it
is common practice to upload e-prints on the arXiv repository whenever such e-prints are ready for submission in
a scientific conference (or sometimes in scientific journals). The arXiv repository is thus considered by computer
scientists as a central repository for academic research related to their field. Consequently, we argue that the most
scientific advances and their development are captured through the arXiv platform. However, other providers such
as Microsoft Academic, Scopus, Web of Science, Semantic Scholar, or the promising API of OpenAlex
might be considered complementary platforms to capture an even more complete picture of scientific works related to
computer science.17 However, future work aiming to integrate such data may face non-trivial information retrieval and
data integration challenges.

Also, other aspects and measures of technological development may be used, such as technology adoption (e.g.,
by considering the growth in software/hardware instances and the number of users, and/or by considering the number
of patents and the dynamics of social-media heuristic recurrences), or technology maturity (e.g., by considering the
opinion of users in their reviews, and/or TRL measurements). In this work, we focused on the scientific community’s
attention to different CSTCCs through the analysis of a subset of scholarly literature. Future work might include such
indicators and compare their trends with ours to assess potential idiosyncrasies between indicators.

Concerning the prevalence of security considerations expressed in e-prints, we selected a set of keywords related
to the key concepts depicted in the Information Security portal of Wikipedia. These key concepts relate to the well-
known CIA triad (i.e., confidentiality, integrity, and availability) and the non-repudiation principle [23, 78]. Our results
support the hypothesis that security attention is gaining momentum at a later stage of technological development. We
leave for future research the investigation and measure of how substantial this delay between technological development
and security development is. This could be done by implementing a delay function, which could also be employed to
investigate whether a catch-up effect is present and for which CSTCCs. However, one might argue that such a pattern
in security attention is induced by an omitted variable, the general hype in cybersecurity which grows over time.
Unfortunately, accounting for such an omitted variable seems hardly feasible in practice. Yet, when we conducted the
Fama-MacBeth (cross-sectional analysis), which is not influenced by any time trend – and thus by such an omitted
variable –, we found support for the relation between security attention and opinion. This last fact demonstrates that
such a potential omitted variable does not affect H3a. Future research could enhance the selection of keywords related
to security considerations by implementing other information retrieval methods such as tf-idf or Key-BERT to capture
the recurrences of words related to security, and then use the most recurrent ones as filters for capturing security
considerations in e-prints.

Additionally, our classical lexicon-based approach to capture opinion – applied through a standard cumulative-
sentiment function – may be enhanced by applying more sophisticated machine-learning approaches (e.g., supervised
decision-tree classifiers, linear classifiers using support-vector machines or neural networks, rule-based classifiers,
or probabilistic classifiers involving naive Bayes or maximum entropy principles). Such approaches would yield a
higher precision for sentiment analysis through semantics and heuristics. However, researchers willing to use such
more sophisticated NLP methods may face issues finding labeled datasets. For instance, BERT [87] and XLNet [66]
models, despite being pre-trained with a plethora of datasets, are not directly transferable to datasets presenting other
text structures. Unfortunately, to the best of our knowledge, there are no academic-work datasets labeled for sentiment
analysis.

17https://docs.openalex.org/api
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7. Conclusion
Little work has been done to model a holistic and dynamic indicator that captures the overall security development
of technologies – especially with respect to technological development. We conceptualized and measured such an
indicator based on the investigation of what we call security dynamics, constituted by (i) the statistical relation
between technological and security developments, (ii) the security development, modeled as the evolution of security
considerations among technologies, and (iii) the effect of security development on the opinion given to technologies
by experts who produce and evaluate these same technologies. We adopted a bibliometric approach related to 20
computer-science technology categories.

We found results that together bring a unique perspective on the critical question how security evolves as part
of technological development. First, there is a lack of relationship between technological and security developments.
Second, security is gaining more attention at a later stage of technological development. Third, the experts’ opinion
related to each technology is explained by the prevalence of security considerations.

These results bring new methods for understanding, modeling, and benchmarking security dynamics of computer-
science technologies. In turn, these methods and models open new heuristics for considering changes related to the
security of information systems.
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Appendix

Figure 10: Multi-plot of security considerations
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Figure 11: Multi-plot of opinion
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Figure 12: Multi-plot of sigmoid fits
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