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Abstract. On the cybersecurity market, novel entities – technologies
and companies – arise and disappear swiftly. In such a fast-paced context,
assessing the survivability of those entities is crucial when it comes to
make investment decisions for ensuring the security of critical infrastruc-
tures. In this paper, we present a framework for capturing the dynamic
relationship between entities of the Swiss cybersecurity landscape. By
using open data, we first model our dataset as a bipartite graph in which
nodes are represented by technologies and companies involved in cyber-
security. Next, we use patents and job openings data to link the two
entities. By extracting time series of such graphs, and by using link-
prediction methods, we forecast the (dis)appearance of links. We apply
several unsupervised learning similarity-based algorithms, a supervised
learning method and finally we select the best model. Our preliminary
results show good performance and promising validation of our surviv-
ability index. We suggest that our framework is useful for critical infras-
tructure operators, as a survivability index of entities can be extracted
by using the outputs of our models.
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1 Introduction

The fast-paced development of technologies reshapes the security of informa-
tion systems [8]. Examples of technologies that redefine cyberdefense are numer-
ous: e.g., quantum computing threatening cryptography protocols, adversarial
machine learning, novel communication protocols, behaviour-based authentica-
tion of IDS, distributed ledgers. In such a complex technology-development con-
text, both threats and opportunities emerge for actors of the cyberspace [3],
including operators of critical infrastructures (CIs). Consequently, a race for a
technological advantage takes place between attackers and defenders [7].
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The assessment of the cybersecurity technological landscape has become a
central activity when it comes to develop cyberdefense strategies [2], especially
in the context of the recent supply chain attacks against CIs1. Such an assess-
ment helps defenders to grab an edge in this technological race by developing
threat-intelligence tools to reduce the information asymmetry between attackers
and defenders [12]. In particular, it enables to foster cyberdefense by identifying
the survival probabilities of entities – i.e., technologies and companies – involved
in the cybersecurity technological landscape and, then investing in the most rel-
evant ones. Especially, these aspects constitute strategic tools for procurement,
one of the greatest challenges faced by governments and CI operators [5].

In this work, we aim to contribute to the technological landscape assessment
effort by presenting a framework for capturing the relationship between entities
of the Swiss cybersecurity technological landscape. By using a dataset coming
from the Technology & Market Monitoring (TMM) platform, we first model
the data as a bipartite graph in which nodes (i.e., entities) are represented by
technologies and companies involved in cybersecurity. We then use patents and
job openings to link entities. By extracting time series of such a graph, and by
using link-prediction methods, we forecast the (des)appearance of links between
entities. We apply several similarity-based algorithms and a supervised learning
machine-learning model that uses outputs from the former. Next we select the
best model based on perfomance measures. We suggest that our framework is
useful for decision-makers involved in the security of CIs, as a survivability score
of entities can be extracted by either using the similarity metrics or probability
calculations from the supervised learning model.

The remainder of this paper is structured as follows: Sect. 2 present the
related work; Sect. 3 presents the data and methods; Sect. 4 shows the prelimi-
nary results; Sect. 5 sets the agenda for future works and discusses limitations;
while Sect. 6 concludes.

2 Related Work

Percolation theory has been previously used as a network-centrality measure –
i.e., for determining the degree of influence of a node within a given network –,
as well as for investigating the effects of a node disappearance on the overall net-
work structure (e.g., [10]). In network science, such a percolation phenomenon
can be investigated through link-prediction methods (e.g., [9]). By accounting
for network structures and other available variables, link-prediction methods
extract metrics accounting for the likelihood of edges (dis)appearances through
time (e.g., [9]). In this respect, Kim et al. used link prediction to forecast technol-
ogy convergence [4]. Additionally, Benchettara et al. [1] adapted link-prediction

1 The 2020 Global Supply Chain Cyberattack is believed to have resulted through
a supply chain attack targeting the IT infrastructure company SolarWinds, which
counts many critical infrastructures among its clients. In order to fight against this
type of attack, our framework may offer the possibility to identify less-secure ele-
ments in the supply chain.
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metrics for bipartite networks. Moreover, Silva et al. [11] and Tylenda et al. [13]
explored time dependant metrics to use with time series within link-prediction
analysis. Finally, supervised learning has been applied to link-prediction inves-
tigations: Mohammad et al. [1] applied supervised learning to a co-authoring
network for several classification algorithms.

However, to the best of our knowledge, link prediction as a method for assess-
ing the dynamics of the cybersecurity technological landscape has not been
explored yet. At least, we found no work focusing on predicting the surviv-
ability of entities composing the cybersecurity technological landscape. In this
work, we present a network-analytics framework that employs link prediction
and supervised learning to build a survivability score of entities composing the
cybersecurity technological landscape.

3 Data and Methods

3.1 Data

We use the data collected by the TMM platform (ca. 1 TB) to create a bipar-
tite network composed of technologies and companies of the Swiss cybersecurity
technological landscape.2 The TMM platform is an information system devel-
oped by armasuisse Science and Technology (S+T). TMM aims to exploit big
data and open-source information in an automated way for intelligence pur-
poses. The TMM system crawls and aggregates information from different online
resources as patent offices (Patentsview), commercial registers (Zefix ) and web-
sites (Wikipedia and Indeed) to obtain a list of companies, patents and job
openings based in Switzerland. By using the companies list, patents and job
openings data, we link companies to technology, creating a bipartite network
(2’996 nodes). We use predefined keywords of cybersecurity related technologies
to compute word similarity with TMM technologies and select the most rele-
vant. We verify the obtained list afterwards to delete any irrelevant technology
and thus we obtain 69 keywords3 from TMM. Data, available from March 2018
to December 2020 (34 time-series entries), are crawled from these platforms at
different rates, and aggregated monthly. In the obtained graphs, we observe that
the companies with most links are well established and long-lived tech companies
like IBM but we can find all sorts of companies like the Swiss Post, Novartis and
Ikea.

3.2 Methods

We define a network G = (V,E), wherein V is any finite set called the vertex set
and E ⊆ V × V , called the edge set, corresponds to relation between elements
of V . Let x, y ∈ V , such as:

– the neighborhood of x is Γ(x) = {y ∈ V s.t. (x, y) ∈ E};
2 https://tmm.dslab.ch//home.
3 keyword list: https://tinyurl.com/jswtsmmn.

https://tmm.dslab.ch//home
https://tinyurl.com/jswtsmmn
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– the degree of x is δx = |Γ(x)|;
– there is a path between x and y if there exists (x0, x1, ..., xn) such that x0 =

x xn = y and (xi, xi+1) ∈ E ∀ 0 ≤ i ≤ n − 1;
– a graph G is said to be bipartite if there exists A,B ⊂ V such that if (x, y) ∈ E

then x and y are not in the same subset A,B.

In traditional link prediction, one computes the metrics for each possible
edge in a frozen network. Then, if the metric is higher than a given threshold,
the edge will appear in the next step. In our case, we compute specific metrics
– listed below from ((1) to (3)) – for all graphs in the time series, except for
the last entry. We use time series ARIMA modelling on each metrics to predict
them for the final entry and use the last graph as a validation set to compute
performance metrics presented here under.

As a next step, we apply a supervised learning framework in order to obtain
the best results from the metrics computed. We use a Support Vector Machine
(SVM) classifier that classifies each edge to a label 0 or 1, representing the
existence or not of that edge in the network. This classifier needs feature for
each edge to make a decision, so we use the three similarity metrics described
here under as features [11]. We train the classifier on all but the last graph and
obtain test performance on it.

Since the networks are sparse, the classification problem is highly imbalanced
and thus we use the area under the receiver operating characteristic curve (AUC)
as the main performance metric, which is widely used in link prediction frame-
works [9]. We select and evaluate eight potential metrics from prior literature
and adapt the best three ones to build the predictions:
(1) Preferential Attachment Index [9]: The mechanism of preferential attachment
has been used to generate evolving scale-free networks, where the probability of
a new link forming from x is proportional to δx. The corresponding similarity
index can be defined as:

sPA
xy = δx · δy. (1)

(2) Katz Index [9]: It is a global index based on the ensemble of all paths. It
sums the number of paths of a given length between x and y multiplied by a
damping coefficient. The mathematical expression reads:

sKatz
xy =

∞∑

l=1

βl · (Al)xy. (2)

Wherein A is the adjacency matrix of the network and β is a free parameter
that damps the influence of long paths.
(3) Hyperbolic Sine Index [6]: The exponential of the adjacency matrix is used
as a metric in unipartite link prediction, but as we work with a bipartite graph,
we can take the odd part of the exponential, which is the hyperbolic sine. It can
be derived by the following sum:

Ssinh = sinh(αA) =
∞∑

i=0

α1+2i

(1 + 2i)!
A1+2i. (3)
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4 Preliminary Results

We apply the methodology and algorithms presented above and obtain the
receiver operating characteristic curve (ROC) and AUC diagnostics in Fig. 1. As
we can see the SVM highly improves the AUC of the link prediction by approxi-
mately 4% compared to the best unsupervised method. Preferential Attachment
Index is worse than a random classifier which could be explained by the fact
that link appearance probability in our graphs is poorly related to nodes degrees.
Companies may prefer investing in emerging technology which are not linked to
many entities, because they may seek exclusivity in the race for technological
edge.

The AUC obtained for the top 3 methods assures the validity of our metrics
as a building block for a survivability index. This would help decision-makers,
involved in CI’s security, to identify emerging technology and companies. Future
algorithms optimization presented in Sect. 5 should increase performances and
thus the validity of the survivability index.

Fig. 1. ROC curves and AUC values for the 4 algorithms considered. Hyperbolic sine
and Katz Index ROC curves are indistinguishable from one another. For those index
β and α were set to 0.05. The dotted line represents the performance of a random
classifier.

5 Further Steps

The next steps are to fine-tune the hyperparameters of our models and apply
cross-validation to obtain a more robust performance measure. We want to
explore other forecasting methods to have a wider view on the effect it has
on performance. We will explore new features like the number of patents or job
openings liking a company to a technology. Finally, we will use the best model
to compute a survivability index for each entity in the network.
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6 Conclusion

To the best of our knowledge, our framework is the first investigation that mim-
ics the creative-destruction and the survival mechanisms of innovations within
the cybersecurity technological landscape. By modelling percolation dynamics
through link prediction, we path the way for further research aiming to com-
pute a survivability score of different entities (i.e., technologies and companies)
represented by nodes of a network (i.e., the graph representation of the Swiss
cybersecurity technological landscape). We suggest that our framework is useful
for decision-makers involved in the security of critical infrastructures, as a sur-
vivability score of entities can be extracted by either using the similarity metrics
or probability calculations from the supervised learning method.
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