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A B S T R A C T

We study security-development patterns in computer-science technologies through (i) the security attention
among technologies, (ii) the relation between technological change and security development, and (iii)
the effect of opinion on security development. We perform a scientometric analysis on arXiv e-prints
(𝑛 = 340,569) related to 20 computer-science technology categories. Our contribution is threefold. First, we
characterize both processes of technological change and security development: while most technologies follow
a logistic-growth process, the security development follows an AR(1) process or a random walk with positive
drift. Moreover, over the lifetime of computer-science technologies, the security development surges at a late
stage. Second, we document no relation between the technological change and the security development. Third,
we identify an inverse relation between security attention and experts’ opinion. Along with these results, we
introduce new methods for modeling security-development patterns for broader sets of technologies.
1. Introduction

In this paper, we investigate the security-development process of
computer-science technologies. We provide the first systematic and
quantitative investigation of security development and its ramifications
for technological change and opinion formation. We aim to respond
to both academic and practical needs for understanding the security
development of information systems and its relation to social change.

Information technologies increasingly impact societies and political
environments by allowing for real-time communication, social media
interactions, or management of critical infrastructures. For instance, the
democratic-debate shifts towards social networks and law enforcement
rely on computer vision and machine learning to identify and even
predict crime. Furthermore, information technology is now an essential
determinant in warfare and the sovereignty of nations. Information
technologies are also prone to security failures affecting the integrity,

∗ Corresponding author at: Information Science Institute, Geneva School of Economics & Management, University of Geneva, 40 Boulevard du Pont-d’Arve,
Geneva 1211, Switzerland.

E-mail address: dimitri.perciadavid@hevs.ch (D. Percia David).
1 We use the term ‘‘security’’ as a replacement for ‘‘information security’’ throughout the text. We define the term as the practice of protecting the privacy,

integrity, availability, and non-repudiation of data. Thus, information security is the probabilistic reduction of unauthorized/inappropriate data access and unlawful
use, disclosure, disruption, deletion, corruption, modification, inspection, recording, or devaluation of information (Anderson, 2020).

availability, and confidentiality of data. These failures impact individ-
uals and organizations alike. The recent ransomware attack on the
Colonial pipeline in the United States is a direct reminder of the
fragility of our digital societies and explains the increasing popularity
of the digital trust concept (Tsvetanov and Slaria, 2021).

Technological change redefines information and communication
technologies (ICTs) (Shalf, 2020). For organizations, emerging tech-
nologies carry both opportunities to enhance operations efficiency for
organizations (Brock, 2021) and security threats (Laube and Böhme,
2017; Anderson and Moore, 2006; Jang-Jaccard and Nepal, 2014).
Overcoming these threats requires the implementation of methods
such as secure-by-design (SBD) engineering, which considers security
from the first stage of the technology development (Anderson, 2020)
and is similar to probabilistic safety assessments (PSA) common in
the aerospace and nuclear industries. Yet, the literature in security
economics affirms that information security is often absent in early
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stages of technological change (Böhme, 2013) given its high cost,
engineering complexity, and the misalignment of priorities between
end-users and security providers (Anderson and Moore, 2006; Böhme,
2013; Anderson, 2020).1

While there exists a rich and growing literature on the limited
attention paid to security in information technologies, there is a dearth
of research on the actual evolution of security along the development
of technologies, a concept that we coin security development. In this
paper, we investigate three aspects of security development: (i) the
evolution of the security attention embedded in technologies, (ii) the
relationship between technologies and security developments, and (iii)
the effect of the opinion towards security development. We adopt a
technology-mining (scientometric) approach on 1 854 076 e-prints of the
arXiv open-data repository (from August 14, 1991, until December
31, 2020). Out of this sample, we identify 340 569 e-prints related
to 20 Computer-Science Technology Categories related to Cybersecurity
(hereafter, CSTCCs), on which we examine the three aspects of security
dynamics mentioned above. We aim to build the first indicator of
security development in computer-science technologies.

Our contribution is threefold. First, we find strong support for
the view that technological change follows a common logistic growth
process when we allow the parameters to be idiosyncratic. We also
characterize the security development of technologies and find that
its proxy variable, the security attention, follows either a simple first
order autoregressive process or a random walk with a positive drift. For
both processes, the positive trend in security attention and additional
results support the view that security is taken into account only at later
stages of technological change. Second, we are not able to identify a
significant relation between the technological change and the security
development in both absolute levels or growth rates. Third, we identify
determinants of the security development approximated by a measure
of security attention. As determinants, we use both the opinion ex-
tracted from scientific articles as well as the dispersion of this opinion
across the lifetime of a CSTCC. We identify a significantly negative
(positive) relation when the opinion (dispersion of opinion) is used as
explanatory variables.

These results shed light on the dynamics of security development,
which is essential to understand (i) how security evolves, (ii) the
relationship between technological change and security development,
and (iii) the determinants of security development. In a further step,
we discuss how our results may be used to shape guidelines and prin-
ciples. More specifically, we suggest using the quantitative evaluation
performed in this work to create benchmarks and avoid weak links (i.e.,
technologies which perform poorly). Additionally, such quantitative
evaluations help estimate the level and dynamics of open security
among technologies, an essential security factor promoted by the NIST
cybersecurity framework.

The remainder of this article proceeds as follows. Section 2 presents
the literature review and hypotheses. Section 3 details the data and
the methodology. Section 4 presents the results. Section 5 discusses the
implications and limitations. Section 6 concludes.

2. Literature review, theory and hypotheses development

In this section, we review the methods developed for measuring the
theoretical variables related to (i) technological change, (ii) security
development, and (iii) the relation between opinion and security. We
emphasize the research gaps that we exploit in this work to offer
pertinent findings, hence giving relevancy to our approach. Such gaps
are the scarcity of (i) benchmarking indicators related to technological
change within an inter-technologies context, (ii) holistic indicators of
security development, and (iii) research on how security attention is
associated with opinion. Given these gaps, our hypotheses question
the existence of three potential patterns: (i) the dynamics of security
attention, (ii) the relationship dynamics between technological change
and security development, and (iii) the dynamics between opinion and
security attention. We investigate these gaps within Computer-Science
2

Technology Categories related to Cybersecurity (CSTCCs).
Fig. 1. This figure shows the logistic growth process of technological change. The
𝑦-axis is a performance indicator. Within this process, an inflection point (projected
on the 𝑥-axis, in green) is reached, and corresponds to the moment from which the
marginal performance decreases. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

2.1. Technological change and security development processes

Both qualitative and quantitative approaches have been used to
model technological change and characterize its process, common to
all technologies. Qualitative assessments include, in particular, Schum-
peter (1942) and Jaffe, Newel, and Stavins (2002) who consider three
consecutive discrete stages: invention, innovation, and diffusion (Jaffe
et al., 2002). Rogers (2010) specifies the invention stage as the en-
gineering inception of a technology, the innovation stage as its prac-
tical implementation, and the diffusion stage as its commercializa-
tion (Rogers, 2010).

Quantitative methods on the other hand assume a functional form
for the technological change process, which allows for studies in contin-
uous time. The sigmoid function, a special case of the logistic function,
stands out in the literature (for an extensive literature review, see Coc-
cia (2005), Lee (2021), Haleem et al. (2019), Calleja-Sanz et al. (2020),
Daim et al. (2016), Porter et al. (2011)). Interestingly, this continuous-
time growth process can be still broken down into three stages: an
explosive stage in the middle of the life cycle surrounded by two soft
ones at the beginning and at the end. These findings reflect those uncov-
ered qualitatively by e.g. Jaffe et al. (2002). These quantitative studies
however use a different nomenclature and define these stages as intro-
duction, growth, and maturity (Li et al., 2019b; Rogers, 1995, 2010;
Lotfi et al., 2014; Chen et al., 2011; Adamuthe et al., 2014; Andersen,
1999; Priestley et al., 2020). The introduction stage typically consists
of a slow positive change rate, though this rate is highly specific to
the technology category and its environment. Years of gestation may
be needed before an emerging technology achieves widespread market
acceptance and commercial success. By satisfying the users’ needs of
niche markets, a novel technology improves before reaching a broader
population of mainstream users (Adner and Levinthal, 2002). During
the subsequent growth phase, the mass market adopts the technology,
which becomes compelling, attracts more investments, and sees overall
improvements thanks to new features (Klepper, 1997; Perez, 2010).
Last, the positive change rate decreases as the technology matures and
approaches its diffusion limits due to market saturation (Perez et al.,
2010; Abernathy et al., 1978).

The empirical literature of these quantitative approaches uses differ-
ent private- and open-source datasets to measure technological change.
Some studies rely on indicators such as bibliometric analyses related to
scientific publications (i.e., scientometrics) (Zhang et al., 2020b,a; Mayr
et al., 2014; Dotsika and Watkins, 2017; Jaewoo and Woonsun, 2014;
Rezaeian et al., 2017), patents (Hajikhani and Suominen, 2022; Choi
et al., 2022; Chen et al., 2017; Golembiewski et al., 2015; Noh et al.,
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2016; An et al., 2018; Lee and Lee, 2019; Song et al., 2017), industry-
market indicators (job openings, trade registers, networks of authors
and citations), or a combination of these (An et al., 2022; Xi et al.,
2022; Ali et al., 2022; Daim et al., 2012; Lee et al., 2010). To analyze
this data, text-mining methods (Chen et al., 2017; Choi and Hwang,
2014; Hao et al., 2014; Antons et al., 2020) and network analysis (Chen
et al., 2022; Zhang et al., 2022; Li et al., 2019b; Mikheev, 2020; Feng
et al., 2022; Hong et al., 2021) are particularly prolific. For instance,
Guo, Wang, Tian, and Xian (2019) analyze 1666 scientific publications
to detect trends in network technologies and information systems (Guo
et al., 2019). With a literature-growth approach and a co-citation
analysis, they detect exponential patterns (capturing the introduction
and the initial stages of the sigmoid process) in technologies. Simi-
larly, Priestley, Sluckin, and Tiropanis (2020) investigate a longitudinal
dataset of 20493 Internet-related US patents between 1990 and 2013.
They find that the accumulation of corporate Internet inventions fol-
lows a sigmoid growth process (Priestley et al., 2020). Son, Kim, Kim,
Han, and Kim (2010) extract topics and primary contributors of peer-
reviewed publications. Using network methods, they extract global
trends in automation and robotics technologies (Son et al., 2010).
Similarly, technological change has been investigated in fields other
than information security (e.g., Chen et al. (2011), Bengisu and Nekhili
(2006), Lotfi et al. (2014), Erzurumlu and Pachamanova (2020)). The
vast majority of these approaches have been employed for individual
technologies (Daim et al., 2016). These analyses uncover a common
change process to all technologies and estimate the technology-specific
parameters of this process.

Rogers (2010) states that technological diffusion occurs within a
social system (Rogers, 2010). In this respect, the arXiv community
is a typical social system in which e-prints related to technologies are
communicated through uploads on a shared repository. Furthermore,
in many technical fields such as mathematics, physics, and computer
science, an important share of research papers are self-archived on
the arXiv repository before being submitted and subsequently pre-
sented or published either at a conference or in a peer-reviewed jour-
nal (Sutton and Gong, 2017). Therefore, we assume arXiv to be a
representative source of observation for technological changes. The
monthly number of uploads of e-prints related to CSTCCs can be used
to assert whether technological change follows a common (logistic
growth) process. We state our first null hypothesis:

H1a: There is no common process that characterizes the technological
change of CSTCCs.

While quantitative methods are widely used to analyze technolog-
ical change, they have seldom been used in the analysis of security
development. One evident exception is the information security field
itself, which uses indicators built upon skill indices (Carlton, 2016),
organizational development (Goode et al., 2018), job openings (Assante
and Tobey, 2011), risks (Hubbard and Seiersen, 2016), dynamics of
incidents (Liu et al., 2015) and evolution of behaviors (Li et al., 2019a).
For a systematic literature review, see Meland et al. (2021). This
research has led to the development of good practices and regulation
in the information security industry. A notable example in the field is
the security by design (SBD) principle, which consists in embedding se-
curity attention within the technological development process (Santos
et al., 2017; Casola et al., 2020; Kreitz, 2019). Under SBD, the security
attention of information systems is designed in parallel from the first
stage (Casola et al., 2020). However, as stated above, there is a lot of
pressure to commercialize a product quickly for it to become profitable
as fast as possible, which in turn postpones the security attention to a
later stage of development (Böhme, 2013; Anderson and Moore, 2006;
Anderson, 2020). Therefore, our null hypothesis is:

H1b: The security development of CSTCCs is time-invariant.
3

2.2. Misalignment between technological change and security development
processes

Among all technologies, those related to computer-science are sub-
ject to a particularly high number of stages, many of which are related
to engineering and project management work. These stages start from
the analysis of usability needs and end at the deployment of the
technology (Zharov and Kozlov, 2018). In this life-cycle, the security
is evaluated, designed, and implemented (Howard and Lipner, 2006)
at various stages, again with large variations from one technology to
the other (Anderson, 2020). Previous research points out discrepan-
cies between drivers of technological change and those of security
development. For instance, research in information-security economics
highlights the fact that misaligned incentives between developers and
end-users constitute a significant barrier in the security development
of a technology (e.g., Anderson and Moore (2006), Anderson (2020,
2001), Anderson and Moore (2007), Böhme (2013)). Notably, Anderson
and Moore (2006) state that, for the security development of large-
scale systems, incentives matter at least as much as technical aspects.
Security failures arise when individuals in charge of a technology’s
security are not the ones who suffer the costs of failures (Anderson
and Moore, 2006). Thus, this misalignment of incentives detaches
the security development of CSTCCs from their technological change.
Similarly, Anderson (2007) points out that software markets behave
in ways akin to a market for lemons (Anderson and Moore, 2007).
Following the concept of Akerlof (1970) (Akerlof, 1978), he examines
how the quality of security in the software market degrades in the
presence of information asymmetry between buyers and sellers. In both
security and general software markets, most users cannot assess the
vulnerability status of the products they purchase. Thus, the buyers’
incentives to pay for security shrink, thereby reducing the sellers’ will-
ingness to improve security. This mechanism leads to a detachment of
security development from other technological change aspects. Finally,
the urge to improve and uphold business revenue streams by launch-
ing new products before competitors tends to undermine the security
development of a technology. Sellers often commercialize technologies
with underdeveloped security and use customers as implicit testers
to identify and patch vulnerabilities (Anderson, 2020). Moreover, the
security attention is often skipped in the early stages of technological
change given the substantial investments security requires Anderson
and Moore (2006), Böhme (2013). We state our null hypothesis:

H2: The security development of a CSTCC is independent from the
technological change.

2.3. Factors of security development

Trend analysis typically captures the attention of a community
towards a technology (Daim and Yalçin, 2022). However, it does not
capture the opinion (Jun et al., 2012). Yet, such opinion is an essential
indicator of technological efficiency (Liu, 2012). The academic liter-
ature on a topic is written by experts (engineers and scholars), who
use a lexicon that carries information about their opinion towards a
technology. Capturing opinion in unstructured data is possible thanks
to sentiment analysis, which is defined as the analysis of a lexicon
of texts transformed into structured data using natural language pro-
cessing (NLP) (Liu, 2012). The method is widely used in management,
finance (Liu, 2012; Fang and Zhan, 2015; Chang and Wang, 2018; Maks
and Vossen, 2013) and marketing to predict consumer trends (Bai,
2011). Even though researchers are supposed to be opinion-neutral, it is
likely unavoidable for their texts to carry a latent opinion. Furthermore,
research has investigated the interaction between opinion and security
attention (Pletea et al., 2014). Gurung and Raja (2016) show that
the prevalence of privacy and security aspects affects individuals’ risk
perceptions (Gurung and Raja, 2016). The connection between risk
and opinion is additionally widely studied in several fields (Chang and

Wang, 2018). Yang et al. (2015, 2016) use sentiment analysis to show
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the relation between consensus and technological uncertainty affecting
perceived risk (Yang et al., 2016, 2015). Therefore, the prevalence of
security attention of experts on a CSTCC should be positively related to
the opinion. Our null hypothesis is:

H3a: For each CSTCC, the experts’ opinion does not explain the security
development.

Both product engineering and scientific works are iterative pro-
cesses requiring design thinking and peer-reviewing, respectively
(Steinmetz, 2011). This process ends once a consensus is reached. For
example, Dou, Zhang, and Nan, (2017) and Lehrer and Wagner (2012)
show that the opinion related to a product converges to a consensus
along with the product’s improvement (Dou et al., 2017; Lehrer and
Wagner, 2012). Similarly, Yüzügüllü and Deason (2007) show that the
maturity and market-readiness of a technology are factors of consensus
in the community surrounding it (Yüzügüllü and Deason, 2007). In
addition, the consensus is easy to estimate from measures of opinion,
for instance using the cross-sectional standard deviation of sentiments
at one point in time (Huang et al., 2019). We expect to observe similar
evidence in any technology field in general and in scientific works
related to technology development in particular. Consequently our
related null hypothesis is:

H3b: For each CSTCC, the experts’ consensus does not explain the
security development.

3. Data and methods

In this section, we first present the empirical variables and how
we measure them. These empirical variables (the e-prints, the security
attention, and the opinion) are the ones we use as proxies for the latent
variables (the technological change, the security development, and the
opinion, respectively). We then present the methodologies we use to
test our hypotheses.

3.1. Data

We extract data from open scientific works (i.e., scholar articles con-
sisting of working papers, preprints, technical reports, post-proceedings,
and publications) labeled e-prints and uploaded on the arXiv reposi-
tory. The latter is a free distribution service and open-access archive for
academic articles related to various technical fields, including computer
science (uploaded e-prints are not peer-reviewed). First, we download
the entire arXiv repository (1 858 293 files, corresponding to 3 TB
of text in pdf) through a mirror of the database found on kaggle.2
The data encompasses all e-prints uploaded since the inception of the
arXiv repository (August 14, 1991) until December 31, 2020. Next,
for each CSTCC, we (i) count the number of e-prints through time, (ii)
extract the share of e-prints that include security attention, and (iii)
extract the opinion expressed by authors.

3.1.1. e-prints
We construct our main variables from the set of e-prints. We use

the number of articles in each CSTCC as a proxy for the technological
change and the text itself to capture the security attention and opinion.

To consistently classify and archive all e-prints, arXiv represen-
tatives (composed of a scientific advisory board) have a systematic
category taxonomy.3 They determine this taxonomy with a Delphi-like
method involving expert members for each arXiv scientific field.4 This
implies that authors willing to upload their e-prints on arXiv must
select the corresponding category. Then, arXiv moderators check the
authors’ classification to ensure consistency. We consider this three-
step classification to be robust because (i) the taxonomy is created

2 https://www.kaggle.com/Cornell-University/arxiv
3 https://arxiv.org/about/people/scientific_ad_board#advisory_committees
4

4

https://arxiv.org/category_taxonomy
through a consensus reached by a panel of experts, (ii) authors have
no apparent incentive to misclassify their work, and (iii) moderators
check the classification consistency. As e-prints are attached to vari-
ous predetermined arXiv fields unrelated to computer science (such
as physics, mathematics, quantitative biology, quantitative finance,
and economics), we filter the arXiv predetermined fields to extract
computer-science technologies (denoted cs.) repository. We apply
a second filter, considering arXiv subcategories in the cs. fields
that are directly associated with information-security technologies.
To determine which arXiv subcategories of the cs. repository are
effectively related to information-security technologies, we use the
Defenses sections listed in the Information Security portal of Wikipedia
as a reference.5 Thus, we select the arXiv subcategories of the cs.
repository whenever this subcategory is also mentioned within the
Wikipedia Defenses section.

From this two-step selection procedure, we retain 20 subcategories
of CSTCCs. In the case of the cs. repository, the category taxon-
omy substantially relies on the list of methodology and technology
categories provided by the 2012 ACM Computing Classification System.6
Therefore, we consider the 20 categories mentioned above as distinct
CSTCCs. We depict the list of these CSTCCs and their respective number
of e-prints in Table 1.

If the arXiv repository is nowadays regarded as an established
platform amongst various scientific communities for uploading their
e-prints, it enjoyed no such popularity at its inception. Therefore, we
cannot assume that the arXiv platform depicts a constant attention
rate related to each CSTCC. To circumvent this bias, we normalize
the number of e-prints related to each CSTCC by dividing the total
number of e-prints per CSTCC per period (month) by the corresponding
amount of total e-prints (i.e., including all categories) of the arXiv
repository per period (month). Such a measure is depicted in Figs. 2
and 3. A preliminary analysis shows that, for the great majority of
categories, we either witness an exponential trend, depicted in Fig. 2
(i.e., corresponding to the introduction and growth stages of the logistic
growth, or an actual logistic growth process, depicted in Fig. 3 (i.e.,
corresponding to the three stages of the process).

3.1.2. Security attention
The security attention measure relates to (i) the technology’s de-

pendability in terms of privacy-preserving and confidentiality aspects,
and (ii) the technology’s ability to ensure the integrity, availabil-
ity, and non-repudiation of data. To capture the security attention
expressed in e-prints, we thus select a set of keywords related to
the two concepts mentioned above. These relate to the well-known
CIA triad (i.e., confidentiality, integrity, and availability) and the non-
repudiation principle (Cherdantseva and Hilton, 2013; Ritzdorf et al.,
2017), and these are further explained in the Information Security portal
of Wikipedia.7 The list of keywords is: secure, security, safe, reliability,
dependability, confidential, confidentiality, integrity, availability, defense,
defence, defensive, and privacy. We then query the arXiv API to select
e-prints that contain these keywords in either their title or abstract.
Subsequently, to extract the share of security attention among each
CSTCC, we divide the number of e-prints per CSTCC including these
keywords by the total number of e-prints per CSTCC. Fig. 4 depicts
how the share of e-prints alluding to security has changed, illustrated
by the CSTCC computer vision and pattern recognition. A preliminary
analysis shows that, for the great majority of categories, we witness
(i) a diminishing dispersion and (ii) an upward trend of the measure.

5 https://en.wikipedia.org/wiki/Information_security
6 https://arxiv.org/corr/subjectclasses
7
 https://en.wikipedia.org/wiki/Information_security#Key_concepts

https://www.kaggle.com/Cornell-University/arxiv
https://arxiv.org/about/people/scientific_ad_board##advisory_committees
https://arxiv.org/category_taxonomy
https://en.wikipedia.org/wiki/Information_security
https://arxiv.org/corr/subjectclasses
https://en.wikipedia.org/wiki/Information_security##Key_concepts
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Table 1
arXiv categories (corresponding CSTCCs) and their respective count of e-prints, with and without security attention. The category cs.CR
(Cryptography and Security) has a share of security attention greater than 75%.
arXiv categories Cluster name (CSTCC) Total count of e-prints With security attention % of security attention

cs.AI Artificial Intelligence 38 620 11 447 29.640
cs.AR Hardware Architecture 2 573 971 37.738
cs.CC Computational Complexity 8 492 1 216 14.319
cs.CL Computation and Language 29 528 8 536 28.908
cs.CR Cryptography and Security 19 784 14 952 75.576
cs.CV Computer Vision and Pattern Recognition 64 696 21 852 33.776
cs.DB Databases 6 269 2 341 37.342
cs.DC Distributed, Parallel, and Cluster Computing 14 955 5 686 38.021
cs.DS Data Structures and Algorithms 18 269 3 458 18.928
cs.GT Computer Science and Game Theory 7 992 2 279 28.516
cs.HC Human–Computer Interaction 8 774 2 753 31.377
cs.IR Information Retrieval 10 407 3 216 30.902
cs.LG Machine Learning 94 024 30 142 32.058
cs.NE Neural and Evolutionary Computing 10 155 2 649 26.086
cs.NI Networking and Internet Architecture 16 606 6 826 41.106
cs.OS Operating Systems 652 303 46.472
cs.PL Programming Languages 5 731 1 937 33.799
cs.RO Robotics 16 187 6 055 37.407
cs.SE Software Engineering 10 032 4 109 40.959
cs.SY Systems and Control 18 347 6 845 37.309
Fig. 2. Normalized count of e-prints: computer vision and pattern recognition. This figure depicts the number of e-prints that belong to the field of ‘‘computer vision and
attern recognition’’ over each month. The data is normalized and spans the period 1998–2021. The figure pictures the ‘‘introduction’’ and ‘‘growth’’ stages of the logistic growth
unction (see Fig. 1).
Fig. 3. Normalized count of e-prints: networking and internet architecture. This figure depicts the number of e-prints that belong to the field of ‘‘networking and internet
architecture’’ over each month. The data is normalized and spans the period 1999–2021. The figure pictures the three phases of the logistic growth: ‘‘introduction’’, ‘‘growth’’, and
‘‘maturity’’ stages (see Fig. 1).
5
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Fig. 4. Security attention: computer vision and pattern recognition. This figure depicts the evolution of the prevalence of security attention, i.e., the e-prints containing
security attention keywords divided by the total number of e-prints. The frequency is monthly and the period is 1999–2021. The right-hand side depicts a diminishing dispersion
and an upward trend. This pattern is present in the majority of categories, as depicted in the multi-plot of all security attention measures (for each CSTCC) available in Fig. 11
(Appendix). Descriptive statistics of the security attention measures are available upon request.
Table 2
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3.1.3. Opinion
To capture the opinion of authors related to each e-print attached to

a given CSTCC, we employ opinion mining by implementing a classic
lexicon-based approach based on a labeled thesaurus (the NLTK opinion
lexicon of Python, in English) to classify the lexicon of e-print authors
as either positive or negative (Serrano-Guerrero et al., 2015).

We first clean and normalize every word in e-prints before trans-
forming them into tokens (machine-readable inputs). Cleaned tokens
are obtained through standard NLP procedures such as (i) transforming
all text in British English, (ii) removing special characters, stop words,
punctuation, and lowering upper-cases. Then, we normalize cleaned
tokens through lemmatization (morphological analysis to transform
tokens into their canonical form). We also consider the impact of direct
quotations referencing previous literature in our sample articles.8 We
onsider this problem to be marginal in this analysis. First, because the
mount of direct quotations in the scientific literature is very limited
nd we check this assumption manually by checking a sub-sample
f articles of each category. Second, even in the case where these
uotations would be significant, they would only generate an error,
hich would disappear in the aggregation process and not a systematic
ias.

Subsequently, we apply a standard cumulative-sentiment function
hat classifies each token into either a positive or negative opinion
efore summing the result for each e-print. The final opinion score is
ormalized for each e-print and ranges from −1 (worst) to 1 (best).
or each month, we sum the scores of e-prints related to the same
STCC.9 We obtain the opinion distribution for each CSTCC and each
onth. In Fig. 5 we display an example of the evolution of the opinion

or the CSTCC computer vision and pattern recognition. We present the
corresponding descriptive statistics in Table 2.

3.2. Methods

The following subsection presents the methodologies employed to
test our hypotheses. For all methods, we define a set 𝛺𝑥 for all CSTCC,
𝑥:

𝛺𝑥 =
{

𝑡 ∣ 𝑡 ≤ 𝑁𝑥, 𝑡 ∈ N∗} (1)

where 𝑁𝑥 is the number of months comprised between the first and
the last e-print for 𝑥.

8 We thank an anonymous referee for pointing out this potential issue.
9 We use the upload date.
6

Descriptive statistics: monthly opinion.
arXiv categories Mean Median Std Dev Skewness Kurtosis

cs.AI −0.002 −0.001 0.006 −1.341 2.809
cs.AR −0.001 0.000 0.007 −1.592 7.664
cs.CC −0.009 −0.009 0.005 −0.967 3.658
cs.CL 0.004 0.005 0.003 −1.038 3.462
cs.CR −0.006 −0.005 0.014 −10.379 140.804
cs.CV −0.003 −0.002 0.007 −2.053 7.548
cs.DB 0.001 0.001 0.006 −0.077 9.936
cs.DC −0.001 0.000 0.005 −1.570 11.395
cs.DS −0.004 −0.003 0.005 −0.008 9.114
cs.GT 0.002 0.003 0.008 −1.379 14.532
cs.HC 0.004 0.005 0.007 −1.261 5.772
cs.IR 0.006 0.007 0.007 −3.640 22.239
cs.LG −0.002 −0.001 0.006 −1.737 10.354
cs.NE −0.003 −0.001 0.007 −2.538 13.560
cs.NI −0.002 −0.001 0.005 −1.774 13.112
cs.OS −0.003 −0.001 0.010 −1.441 4.284
cs.PL 0.002 0.002 0.006 −3.476 40.685
cs.RO −0.003 −0.002 0.007 −3.337 18.244
cs.SE −0.001 0.000 0.006 −1.022 5.650
cs.SY −0.005 −0.005 0.004 −0.529 7.064

This table displays summary statistics of the monthly opinion for each CSTCC.

3.2.1. Technological change process
To model the technological change, we use a non-linear optimizer,

the Levenberg–Marquardt algorithm, to fit a logistic function on the
historical observations of e-prints for each CSTCC) (Moré, 1978). We
use the Python scipy package and its .optimize.curve_fit

ethod.10 We make this choice because the logistic function general-
zes the sigmoid and therefore offers more flexibility to capture the
ommon process underlying each CSTCC. It is also a bounded and
ifferentiable function with a single inflection point (Han and Moraga,
995). Therefore, we define the technological development function,
𝑥(𝑡), with 𝑡 ∈ 𝛺𝑥,

𝜎𝑥(𝑡) =
𝐿𝑥

1 + 𝑒−𝑘𝑥(𝑡−𝑡0𝑥)
, (2)

where:

– 𝑡0𝑥 is when the inflection point is reached (corresponding
to the maximum of the first derivative of the function, i.e.,

10 .𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒.𝑐𝑢𝑟𝑣𝑒𝑓𝑖𝑡 is an optimizer. It includes solvers for non-linear prob-
lems, linear programming, constrained and non-linear least-squares, root
finding, and curve fitting (see, https://docs.scipy.org/doc/scipy/reference/
optimize.html).

https://docs.scipy.org/doc/scipy/reference/optimize.html
https://docs.scipy.org/doc/scipy/reference/optimize.html
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Fig. 5. Distribution of opinion: computer vision and pattern recognition. The median is plotted with dots and the second and third quartiles are plotted with lines. The
requency is monthly and the period is 1998–2021. Similarly to Fig. 4, the plot shows no interesting properties on its left-hand side as the data are sparse. However, a decreasing
ispersion (due to the law of large numbers), and a downward trend is present. A multi-plot of all opinion measures (for each CSTCC) available Fig. 12 (Appendix).
the maximum growth rate of technological change (Rogers,
2010));

– 𝐿𝑥 is the curve’s maximum limit value (i.e., lim𝑡→+∞ 𝜎𝑥(𝑡) =
𝐿𝑥) (Verhulst, 1838; Rogers, 2010);

– 𝑘𝑥 is the sigmoid growth rate or steepness of the curve (Ver-
hulst, 1838; Rogers, 2010).

For every time series of e-prints related to a CSTCC, 𝐷𝑥, the
optimize.curve_fit method finds the optimal values of the
arameters 𝐿𝑥, 𝑘𝑥 and 𝑡0𝑥 and their standard errors (by minimizing

non-linear least-squares errors).11 If fitting the logistic function to our
datasets yields compelling metrics, that is if (i) if 90% of data-points
fall within the boundaries of the standard error of the regression, and
(ii) if the reduced chi-squared, 𝜒2

𝜈𝑥
≊ 1, then we would reject the null

hypothesis of no common process (H1a).12

3.2.2. Security development process
To capture the security attention in each CSTCC, we compute a

rolling mean 𝛤 with a window of one year, of the share of e-prints
that include at least one word from the security lexicon. We model the
rolling mean for each 𝑥 as follows,

𝛤𝑆𝑥,𝑡
= 1

12

𝑡
∑

𝑖=𝑡−11
𝑆𝑥,𝑖 (3)

If the rolling mean displays a positive trend, we would reject the null
of (H1b). For each CSTCC, we also estimate first order autoregressions
to test whether the process is akin to an AR(1) or a random walk with
a positive drift.

11 Non-linear least squares is the form of least squares analysis used to fit a
et of 𝑣 observations with a model that is non-linear in 𝑤 unknown parameters

(𝑣 ≥ 𝑤). The basis of the method is to approximate the model by a linear one
and refine the parameters by successive iterations.

12 In our case, the standard error of the regression is captured by computing
the squared root of the reduced chi squared, denoted as 𝜒2

𝜈 . The 𝜒2
𝜈 statistic,

lso known as the mean squared weighted deviation (MSWD), is used as a
oodness-of-fit metric. This statistic can be interpreted as follows: a 𝜒2

𝜈 ≫ 1
ndicates a poor model fit. A 𝜒2

𝜈 > 1 indicates that the fit has not fully
aptured the data (or that the error variance has been underestimated). In
rinciple, a value of 𝜒2

𝜈 around 1 indicates that the extent of the match
etween observations and estimations agrees with the error variance. A 𝜒2

𝜈 < 1
indicates that the model is overfitting the data: either improperly fitting noise
or overestimating the error variance (Bevington and Robinson, 2003).
7

3.2.3. Relation between technological change and security development
We use a multivariate time-series method for each 𝑥 concerning

the security development and its relationship to technological change.
More specifically, we fit a multivariate autoregressive model to each
𝑥, which comprises both lagged dependent and independent variables
of orders 𝑝𝑥 and 𝑞𝑥 ∈ 𝛺𝑥). Both orders are determined with the
Akaike information criterion (Asteriou and Hall, 2015). We estimate
the following specification with OLS,

𝑆𝑥,𝑡 = 𝜁𝑥 +
𝑝𝑥
∑

𝑖=1
𝜙𝑥,𝑖𝑆𝑥,𝑡−𝑖 +

𝑞𝑥
∑

𝑗=1
𝜃𝑥,𝑗𝐷𝑥,𝑡−𝑗 + 𝑢𝑥,𝑡, (4)

where:

– 𝑆𝑥 is the time series of security development, 𝑆𝑥,𝑖 is its value at
time 𝑖, and 𝜙𝑥,𝑖 is its autoregressive parameter;13

– 𝐷𝑥 is the time series of technological development, 𝐷𝑥,𝑗 is its
value at time 𝑗, and 𝜃𝑥,𝑗 is its regressor parameter;

– 𝜁𝑥 is a constant;
– 𝑢𝑥,𝑡 is the time series of error terms (i.e., 𝑆𝑥,𝑖 − �̂�𝑥,𝑖).

As time series 𝑆𝑥 and 𝐷𝑥 may include individual seasonal trends
for each 𝑥, we apply the Seasonal and Trend decomposition using
Loess (STL) method (Cleveland et al., 1990). We use a logarithmic
transformation on the series as they often present exponential growth
curves (Asteriou and Hall, 2015). Finally, as these time series have unit-
roots, we differentiate them with order 𝐼𝐷𝑥

(𝑛) and 𝐼𝑆𝑥
(𝑚), where 𝑛 and

𝑚 ∈ N∗ (Asteriou and Hall, 2015).
If the estimation delivers high adjusted 𝑅2 and statistically sig-

nificant and positive coefficients across CSTCCs, we would reject the
null of no relationship between security development and technological
change (2).14

3.2.4. Opinion mining
We analyze the determinants of the security attention and consider

two factors. First, the opinion (H3a) and second, the standard deviation
of the opinion which measures dispersion (H3b). To test H3a and
H3b, we use the cross-sectional approach of Fama & MacBeth (Fama
and MacBeth, 1973). This method, originally developed to estimate

13 NB: As we capture security development through the security attention,
here 𝑆𝑥 is used interchangeably for both concepts.

14 Before interpreting the results, we verify that the time series of 𝑢𝑥,𝑡 is not
(i) serially correlated and (ii) is not heteroskedastic (Asteriou and Hall, 2015).
Such statistics are available upon request.
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both market-risk exposures and risk premia of assets, is a two-pass
estimation. We use the second pass, a sequence of cross-sectional OLS
regressions at each month 𝑡, with 𝑡 ∈ 𝛺𝑥, for an 𝑥 of the form,

𝑥 = 𝛼𝑥 + 𝛽𝑥𝜂𝑥 + 𝜸𝐱𝐙𝐱 + 𝜖𝑥 (5)

where:

– 𝑦𝑥 is the security attention;
– 𝛼𝑥 is a constant;
– 𝜂𝑥 is the variable of interest (i.e., the opinion (mean or median in

turn) and its dispersion, and 𝛽𝑥 the coefficient;
– 𝐙𝐱 is a matrix of additional controls, and 𝛾𝑥 is a vector of coeffi-

cients;
– and 𝜖𝑥 is the error term.

Next, we consider the estimated time series of 𝛽, 𝛽, to test whether
they significantly depart from zero. In addition, we correct for serial
correlation and heteroskedasticity in 𝛽 with Newey–West’s adjustment
method (Newey and West, 1987).

We project the time series of parameters on a constant and extract
the covariance matrix of errors that we adjust to retrieve the standard
errors. As the procedure of Newey and West (1987) requires knowing
the appropriate lag period, we also use the non-parametric approach
of Newey and West (1994) with automatic lag selection. Despite the
small size of the cross-section (20 CSTCCs), the large time dimension
still permits statistical inference.15 Finally, we consider the unavailabil-
ity of some CSTCCs at the beginning of our sample and restrict the
estimation to a period starting in November 2002, when 15 CSTCCs
are simultaneously available in the cross-section (for a total of 217
time-observations in our sub-sample). To proxy for the instantaneous
opinion, we consider, in turn, the median and mean computed in
each CSTCC. Finally, to control that our results are not driven by the
numerator or denominator of the share of security attention, we add
two control variables, the number of e-prints with security attention
and the total number of e-prints.

4. Results

In this section, we present the results of applying the specified
methods (Section 4) we used to test our hypotheses (Section 3). H1a,
H1b, H3a, and H3b are verified (i.e., null hypotheses are rejected)
for all CSTCCs – except for H1a, where for 5 out of 20 CSTCCs, the
null hypothesis is not rejected –, while H2 is not verified (i.e., the null
hypothesis is not rejected).

4.1. A logistic growth process for technological change

Table 3 shows the metrics and parameter values of non-linear
regressions that fit a logistic function to our data.

Out of the 20 CSTCCs, 15 exhibit 𝜒2
𝜈 > 1, five exhibit 𝜒2

𝜈 ≫ 1,
and one exhibits 𝜒2

𝜈 < 1.16 Therefore, the logistic function fits our
bserved data for 15 different CSTCCs. In Fig. 8 we normalize all fits
or comparison and we display the logistic fits for all CSTCCs in Fig. 10
Appendix). Hence, we reject the null of H1a for 15 CSTCCs: they

follow a common logistic growth process. We interpret the estimates
of a 𝜒2

𝜈 < 1 and 𝜒2
𝜈 ≫ 1) as follows. The only estimates 𝜒2

𝜈 < 1 is
cs.OS which has sparse data and thus a high data dispersion (in fact,
only 652 e-prints have been uploaded throughout the subcategory’s
entire history). The estimates 𝜒2

𝜈 ≫ 1, is obtained for technologies
that have not reached their inflection point yet. Thus, in some cases,

15 In fact, in their study, Fama and MacBeth (1973) use a cross-section of
nly 20 portfolios.
16 i.e., the different 𝜒2

𝜈 lay within the same order of magnitude than 1, and
re greater than one for 15 CTSCCs out of 20.
8

Table 3
Sigmoid fits of monthly normalized and aggregated number of e-prints per CSTCC.
arXiv categories 𝜒2

𝜈 SE L k t0
cs.AI 10.062 3.172 49908.902 0.015 2071
cs.AR 1.889 1.375 1297.227 0.016 2065
cs.CC 2.588 1.609 0.489 0.032 2004
cs.CL 12.145 3.485 5.568 0.039 2019
cs.CR 3.013 1.736 10.783 0.015 2028
cs.CV 4.966 2.228 13.626 0.037 2019
cs.DB 2.454 1.567 0.461 0.025 2010
cs.DC 2.178 1.476 1.665 0.020 2015
cs.DS 2.788 1.670 1.273 0.037 2009
cs.GT 1.969 1.403 0.524 0.054 2009
cs.HC 2.275 1.508 1766.652 0.020 2051
cs.IR 2.137 1.462 8.690 0.015 2031
cs.LG 12.952 3.599 12463.478 0.030 2039
cs.NE 3.042 1.744 1.298 0.025 2016
cs.NI 2.383 1.544 1.125 0.046 2008
cs.OS 0.893 0.945 78.830 0.007 2115
cs.PL 2.712 1.647 0.423 0.022 2011
cs.RO 3.762 1.940 6.918 0.032 2022
cs.SE 3.297 1.816 0.855 0.025 2013
cs.SY 10.444 3.232 2.963 0.031 2018

This table displays the goodness-of-fit measures (i.e., the 𝜒2
𝜈 , and the regression standard

error (SE)), and parameters of the sigmoid fits of the total normalized e-prints per
CSTCC. The parameter 𝑡0 indicates the year in which the maximum growth rate of the
CSTCC is reached.

the Levenberg–Marquardt algorithm does not converge. The CSTCCs
concerned are cs.AI, cs.CL, cs.LG, and cs.SY. Fig. 6 shows the
fit of a typical logistic growth pattern for the CSTCC cs.DS, while
Fig. 7 shows the fit of a typical exponential growth pattern for the
CSTCC cs.CV. This exponential growth is typical of the first stage of
the logistic growth process. If we cannot confirm that these five CSTCCs
will follow a logistic growth process, we cannot reject this hypothesis
either. Overall our results support the theory that most CSTCCs follow
a common process of technological change (Rogers, 2010).

4.2. Security development increases over time

Fig. 9 shows the rolling mean (Eq. (3)) of the share of security
attention.

All CSTCCs display positive trends, depicting an increase in the
share of security attention over time. Hence, we reject the null of
H1b: we find empirical evidence of a security development process
which grows for all CSTCCs over time, supporting the view that security
attention spikes at a later stage of the technological change.

In Table 4 we report the results of the first-order individual au-
toregressions. We find a positive coefficient in all but two CSTCCs,
thereby confirming the aforementioned graphical results. Moreover,
four CSTCCs (cs.AI, cs.CC, cs.CR and cs.NI) are significant at the 1%
level, and four others (cs.PL, cs.RO, cs.SE and cs.SY) are significant at
the 10% level. We interpret the non-significant positive coefficient of
the remaining ones as characteristic of a random walk with positive
drift.

4.3. Security development is independent from technological change

We report the results of the tests of H2 in Table 4. We estimate
a multivariate time series regression to test the relation between the
security development, 𝑆𝑥,𝑡, and the technological change, 𝐷𝑥,𝑡, across
CSTCCs, 𝑥. We do not find autocorrelation or heteroskedasticity in the
error term 𝑢 for all 𝑥 (these results are available upon request). We
do not find a statistically significant relation between 𝑆𝑥,𝑡 and 𝐷𝑥,𝑡:
the statistical significance remains well above the 5% threshold for the
great majority of regressors of 𝐷 (i.e., 𝑞 ∗∗= 0,∀𝑞, 𝑥). In the case of sta-
tistically significant estimates, their magnitude is systematically small
(see Table 5). Hence, we cannot reject the null of H2: technological
change does not explain security development.
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Fig. 6. Logistic growth function fit of e-prints: data structures and algorithms. This figure depicts the normalized e-prints (in blue), and the logistic growth fit (Eq. (2), in
red). We additionally plot the inflexion point (vertical green dashed segment). We report the parameters of the fit, their standard errors in parenthesis and the 𝜒2

𝜈 . The frequency
is monthly and the period is 1996–2021. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Beginning of logistic growth of e-prints: computer vision and pattern recognition. This figure depicts the normalized e-prints (in blue), with the logistic growth
function fit (Eq. (2), in red). We report the parameters of the fit, the parameters, their standard errors in parenthesis and the 𝜒2

𝜈 . The frequency is monthly and the period is
1998–2021. In contrast to Fig. 5, the inflection point (i.e, 𝑡0) was reached around 2019. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 8. Normalized fits of logistic growth functions. This figure depicts the fits of all CSTCCs normalized through a division by its maximum. The frequency is monthly and the
period is 2000–2021. A 45◦ line starting from the bottom-left corner to the upper-right, would visually segregate CSTCCs that have reached or not their inflection points above
or below the line, respectively. Such a segregation can also be determined by analyzing 𝑡0 of Table 3.
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Fig. 9. Multi-plot of the security attention. This figure depicts the share of articles with security attention for each CSTCC. The frequency is monthly, and depending on the
CSTCC, the period varies from 1999–2021 and 2014–2021.
Table 4
This table displays the results of individual auto-regressions of order one of the security attention in each of the twenty technologies.

cs.AI cs.AR cs.CC cs.CL cs.CR cs.CV cs.DB cs.DC cs.DS cs.GT cs.HC cs.IR cs.NE cs.NI cs.OS cs.PL cs.RO cs.SE cs.SY

coefficient 0.30 0.06 0.20 0.07 0.25 0.02 0.07 0.05 0.03 0.02 −0.01 −0.07 0.03 0.34 0.12 0.16 0.13 0.14 0.15
𝑡-statistic 4.40 0.84 3.08 1.01 3.89 0.26 1.04 0.73 0.49 0.25 −0.18 −1.00 0.45 5.31 1.41 2.31 1.78 2.07 1.77
4.4. Opinion, consensus, and security development

We report the results of the tests of H3a and H3b in Table 6. We
test the relation between the instantaneous and aggregate measure of
opinion (mean and median in turn) and the share of security attention
across CSTCCs (H3a) with a Fama–Macbeth approach. In all specifi-
cations, we document a significant negative relation that holds after
the Newey–West adjustment (bandwidth ranging between 1 and 5, and
truncated for the lag selection). More specifically, in the parsimonious
version of the model, the estimates of security attention is significant
at the 1% level (t-stats of 4.00 and 3.37 for the mean and the median,
respectively). These results are robust to the inclusion of the (log)
number of e-prints and (log) number of e-prints containing security
attention. The size of the estimates remains close and the statistical
significance remains well below the 1% threshold. Thus, we rule out
the possibility that our results are driven by either the numerator or the
denominator used to construct the variable of interest. Moreover, given
that we employ a cross-sectional methodology, these specifications also
discard the possibility of a spurious time-effect as an explanation for our
results. Interestingly, the point estimate for the numerator is positive
and significant at the 1% level in all specifications, while that of the
denominator is highly significant in the last specification only. This
makes us confident that the share of security attention variable is
10
different from the absolute number of e-prints with security attention
and total number of e-prints. Hence, we reject the null of (H3a). The
experts’ opinion in a given CSTCC is significantly and negatively related
to the security attention.

In a final specification, we include the standard deviation of the
opinion as an explanatory variable to proxy for the (inverse) consen-
sus. We obtain similar orders of magnitude for the estimate and a
statistical significance that remains on par with the usual significance
thresholds. The estimates are highly significant and positive (adjusted
t-statistic up to 7.67). These results align with those of the literature
in finance. Such a positive relation between opinion dispersion (of e.g.,
analysts who provide price targets and recommendations for stocks)
and actual stock returns is well documented (Diether et al., 2002) and
theoretically backed by asset pricing models (Johnson, 2004). Hence,
we reject the null of (H3b): The consensus (dispersion of opinion) is
negatively (positively) related to the security attention. Consequently,
we find empirical evidence for two contemporaneous determinants of
the opinion towards the CSTCCs.

5. Discussion

In this section, we discuss the social implications and the academic
relevance of our findings, as well as paths for further research.



Technological Forecasting & Social Change 188 (2023) 122316D. Percia David et al.
Table 5
Multivariate time-series regression of security development.

𝑆𝑥,𝑡 𝐷𝑥,𝑡 Adjusted 𝑅2 SE regression AIC Sum resid2 F-stat

𝑝𝑥 𝑝∗∗𝑥 𝐼𝑆𝑥
interpolated ratio 𝑞𝑥 𝑞∗∗𝑥 𝐼𝐷𝑥

𝑆𝑥,𝑡

cs.AI 12 7 1 0.04 1 0 2 0.419 0.099 −556.9 2.98 18.63
cs.AR 12 8 1 0.23 2 2 1 0.448 0.139 −272.0 4.69 15.88
cs.CC 12 10 1 0.24 1 0 1 0.478 0.060 −976.5 1.24 25.96
cs.CL 12 8 1 0.02 1 0 2 0.436 0.094 −571.2 2.65 19.46
cs.CR 12 5 1 0.12 1 0 1 0.508 0.095 −524.7 2.47 23.82
cs.CV 12 8 1 0.15 1 0 3 0.569 0.111 −401.6 3.07 27.79
cs.DB 12 7 1 0.07 1 1 1 0.480 0.113 −378.8 3.12 19.26
cs.DC 12 8 1 0.03 1 0 1 0.508 0.104 −421.9 2.64 21.41
cs.DS 12 8 1 0.22 1 0 1 0.419 0.075 −783.8 1.81 19.78
cs.GT 12 8 1 0.11 1 0 1 0.403 0.107 −374.6 2.54 13.28
cs.HC 12 10 2 0.14 1 0 2 0.739 0.140 −266.8 4.78 56.87
cs.IR 11 6 1 0.06 1 0 2 0.624 0.115 −373.7 3.24 36.74
cs.LG 12 8 1 0.09 1 0 2 0.420 0.105 −448.3 2.88 16.32
cs.NE 12 7 1 0.11 2 0 1 0.549 0.111 −402.1 3.07 24.02
cs.NI 12 9 1 0.09 7 4 1 0.398 0.111 −411.3 3.15 10.55
cs.OS 12 4 1 0.35 2 1 1 0.431 0.147 −241.4 5.28 14.93
cs.PL 12 8 1 0.20 2 0 1 0.437 0.099 −544.8 2.95 18.39
cs.RO 12 5 1 0.23 1 0 1 0.350 0.104 −420.8 2.60 11.54
cs.SE 12 8 1 0.11 2 0 1 0.475 0.105 −418.6 2.65 17.60
cs.SY 12 4 1 0.26 1 0 2 0.379 0.079 −420.1 1.11 10.02

This table lists the respective (i) autoregression order, 𝑝𝑥, and regression order, 𝑞𝑥, (ii) number of statistically significant (up to 𝑝 > 0.05) autoregressors, 𝑝∗∗𝑥 ,
and regressors, 𝑞∗∗𝑥 , and (iii) the degree of differentiation, 𝐼𝑆𝑥

and 𝐼𝐷𝑥
. We also report the interpolated ratio of 𝑆, as these time series cannot present null

values (otherwise, the share of security considerations would be zero). To fulfill missing values, we perform a linear interpolation between concerned data
points. Regression metrics are on the right.
Table 6
Cross-sectional regressions average of security attention.

Security attention

Mean opinion −4.56 −3.68 −4.73 −3.00 −2.04 −1.83
(−6.73) (−5.70) (−7.03) (−4.25) (−3.07) (−6.63)
[−4.79] [−3.52] [−4.71] [−2.86] [−1.80] [−4.49]

Opinion 𝜎 9.84 6.10 10.41 9.40 6.07 0.92
(12.30) (7.26) (12.74) (11.35) (6.96) (2.76)
[7.67] [3.71] [7.37] [7.41] [3.92] [2.64]

Log (# e-prints with security attention) 0.13 0.13 0.13
(15.22) (16.27) (15.11)
[5.87] [6.49] [6.27]

Log (# e-prints) −0.004 −0.01 0.38
(−0.71) (−1.39) (70.83)
[−0.63] [−1.58] [55.53]

Average 𝑅2 0.13 0.39 0.22 0.15 0.42 0.22 0.25 0.50 0.92

Security attention

Median opinion −4.23 −3.49 −4.49 −3.31 −2.24 −2.17
(−6.23) (−5.54) (−6.63) (−4.89) (−3.52) (−7.91)
[−4.25] [−3.34] [−4.56] [−3.15] [−1.97] [−5.42]

Opinion 𝜎 9.84 6.10 10.41 10.01 6.34 1.01
(12.30) (7.26) (12.74) (12.19) (7.01) (3.04)
[7.67] [3.71] [7.37] [7.63] [3.90] [2.86]

Log (# e-prints with security attention) 0.13 0.13 0.13
(15.43) (16.27) (15.45)
[5.91] [6.49] [6.31]

Log (# Total e-prints) −0.004 −0.01 0.38
(−0.58) (−1.39) (70.52)
[−0.49] [−1.58] [55.21]

Average 𝑅2 0.12 0.38 0.21 0.15 0.42 0.22 0.25 0.49 0.92

This Table reports the time-series average of parameters from cross-sectional regressions of security attention. The explanatory variables are the mean opinion,
standard deviation of opinion, (log) number of e-prints with security attention, and (log) number of e-prints. The first (second) panel presents the results with
mean (median) opinion. We report unadjusted 𝑡-statistics in parenthesis, and Newey–West (1994) 𝑡-statistics in square brackets. We additionally report the average
𝑅2, for each specification. The sample period is January 2002–November 2020 and the number of time-series observations is 224.
5.1. Social implications

Whether it ensures the privacy of health data, the robustness and
continuity of governments and critical infrastructures, or the network
stability in times of war, digital trust has become a central concern in
highly digitized societies. Yet, as emphasized by the World Economic
Forum, building sustainable digital trust requires the development of
robust metrics. This process starts at the inception of an information
11
technology. We use a combination of logistic growth modeling, lexicon-
based topic extraction, and opinion mining to measure how digital trust
changes throughout the life-cycle of a technology. We find that the
experts’ opinion explains best the progressive buildup of digital trust
of information technologies, although the increase of digital trust is
independent of technological change.

Our results are important as they represent a first quantitative
measure of the evolution of information technology and digital trust.
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The practical use of our quantitative framework includes technolog-
ical roadmapping for strategic management of information systems,
as well as policy making. Our proposed methods should help pilot
the acquisition and deployment of information technologies as well
as help manage research efforts to further build trust in a specific
technology. For instance, computer vision has numerous applications in
both civil and military fields. Yet, for this specific technology, we find
that digital trust currently decreases, while the technology development
has just passed the logistic inflexion point. As they pervade society,
these technologies will require close digital trust scrutiny.

5.2. Academic importance

First, the logistic growth process of technological change identi-
fied for the great majority of the 20 CSTCCs enables us to compare
them through a common process, and to forecast their future growth
trajectories. Knowing when a CSTCC reaches its inflection point helps
to anticipate a CSTCC’s slow-down and maturity (Rogers, 2010), and
even its obsolescence (Parvin, 2017). This indicator helps to prioritize
investment and acquisition of technologies, an opportunity-cost chal-
lenge. Knowing technologies’ growth stages helps to time investment
decisions appropriately (Keupp et al., 2019). Information about the
upcoming slow down of CSTCC’s growth, relative to other technologies
or in absolute terms, is critical to set priorities. For instance, organiza-
tions willing to invest in emerging (mature) technologies are likely to
prioritize technologies that have not reached (reached) their inflection
point.

Second, the lack of a significant relationship between technological
change and security development, and the fact that the latter occurs at a
late stage, supports the view of a lack of security standards in computer
science (Casola et al., 2020; Kreitz, 2019; Böhme, 2013; Anderson,
2001; Panarello et al., 2018). Our approach also helps to evaluate the
security development among different technologies (Anderson, 2020).
Decision-makers who acquire technologies must grasp the security
maturity level, in particular given that security is often discarded at
the expense of revenue or user-base growth (Anderson, 2020). How
much attention has been paid to security development during techno-
logical change stages? When did the security development pick up?
Our approach sheds light on these aspects and may help IT decision-
makers, such as CISOs, to prioritize investments or acquisitions. We also
give hints on how aspects related to security are considered within the
engineering process.

Third, to complement the investigation of the technological change
and security development, we extract experts’ opinion towards tech-
nologies. We investigate how opinion and consensus affects security
development. This relation improves decision-making in technologies’
selection. Similar to financial assets, for which opinion explains returns,
the opinion associated with technologies are linked to security risks (Di-
ether et al., 2002). The relation between the dispersion of opinion and
the security attention is another striking example of how security risks
can be explained with opinion measures.

5.3. Future research

We use the measure of scientific works as a proxy for technological
change in alignment with an abundant bibliometric literature (Dotsika
and Watkins, 2017; Jaewoo and Woonsun, 2014; Rezaeian et al., 2017).
More specifically, we measure the number of e-prints uploaded through
time in the arXiv repository for each CSTCC. With this measure,

e capture the scientific community’s attention to CSTCCs. In the
ield of computer science, it is a common practice to upload e-prints
n the arXiv repository whenever they are ready for submission
o a scientific venue. The arXiv repository is thus considered by
omputer scientists as a central repository. Consequently, we argue
hat the latest scientific advances are captured by the arXiv plat-
orm. However, other providers such as OpenAlex, Dimensions AI,
12
Scopus, Web of Science, or Semantic Scholar might be con-
sidered as well.17 Also, other aspects and measures of technological
development may be used, such as technology adoption (e.g., by con-
sidering the growth in software/hardware instances and the number
of users, and/or by considering the number of patents and the dy-
namics of social-media heuristic recurrences), or technology maturity
(e.g., by considering the opinion of users in their reviews, or TRL
measurements).

Concerning the share of security attention expressed in e-prints, we
select a set of keywords related to concepts depicted in the Information
Security portal of Wikipedia. These concepts relate to the CIA triad
(i.e., confidentiality, integrity, and availability) and the non-repudiation
principle (Cherdantseva and Hilton, 2013; Ritzdorf et al., 2017). Our
results support the hypothesis that the security attention improves at
a late stage of the technological change process. We leave for future
research the investigation and measure of how substantial this delay
between technological development and security development is. This
could be done by implementing a delay function, which could also be
employed to investigate whether a catch-up effect is present and for
which CSTCCs this effect takes place. However, one might argue that
such a pattern in security attention is induced by an omitted variable:
the overall growing interest in cybersecurity issues. Unfortunately, ac-
counting for such an omitted variable seems hardly feasible in practice.
Yet, when we conducted the Fama–MacBeth (cross-sectional analysis),
which is not influenced by any time trend – and thus by such an
omitted variable –, we found support for the relation between security
attention and opinion. This demonstrates that this omitted variable
does not affect the test of H3a. Future research could enhance the
selection of keywords related to security attention by implementing
other information retrieval methods such as tf-idf or Key-BERT to
capture the recurrence of words related to security, and use the most
recurrent ones as filters to capture the security attention in e-prints.

Finally, our classic lexicon-based approach to capture opinion could
be enhanced with machine-learning approaches (e.g., decision-trees,
support-vector machines, or neural networks). Such approaches would
yield a higher precision for sentiment analysis. However, researchers
willing to use such sophisticated NLP methods may face issues finding
labeled datasets. For instance, BERT (Tenney et al., 2019) and XL-
Net (Myagmar et al., 2019) models, despite being pre-trained with a
plethora of datasets, are not directly transferable to datasets presenting
other text structures. Unfortunately, to the best of our knowledge, there
are no academic-work datasets labeled for sentiment analysis.

6. Conclusion

Little work has been done to model a holistic and dynamic indicator
that captures the overall change in a technology’s security level —
especially with respect to technological change. We conceptualize and
measure such an indicator based on the investigation of what we call
security development. This indicator is described by (i) the statistical
relation between technological change and security development, (ii)
the security development itself, modeled as the evolution of security
attention of different technologies, and (iii) the effect of opinion and
consensus on security development. We adopt a bibliometric approach
related to 20 computer-science technology categories. Our results bring
a unique view on the technological change and security development
processes. First, we are not able to find a dependence between the two
processes. Second, we find that more attention is paid to security at a
late stage of technological change. Third, we find that the opinion is
a significant and negative determinant of the security attention. Our
indicator also evaluates the efficiency of the NIST recommendation to
shift towards open security, i.e. the use of open-source philosophies and
methodologies to approach security information technologies. To our

17 https://docs.openalex.org/api

https://docs.openalex.org/api
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Fig. 10. Multi-plot of logistic growth fits.
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Fig. 11. Multi-plot of security attention.
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Fig. 12. Multi-plot of opinion.
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knowledge, our work presents for the first time an indicator capable
of capturing open-security dynamics in computer-science technologies.
We are thus able to show for instance that even in an open-security
context, security-by-design is not common practice. Furthermore, our
benchmark may measure the progress towards this open-security rec-
ommendation over time. We leave for future research to measure if
this recommendation accelerates a security-by-design approach given
a technology at a low technology-readiness level. Altogether, this re-
search brings new methods to model the security development of
computer-science technologies.
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