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Abstract—Extreme multi-label (XML) classification involves
assigning multiple labels to an instance from an extremely large
set of possible labels. Despite its significance, zero-shot learning
within the context of XML classification remains relatively
understudied. Zero-shot learning becomes pivotal when dealing
with new labels not present during the training phase, a common
occurrence in real-world applications. Existing approaches often
resort to training zero-shot learning classifiers from scratch,
which can be computationally expensive and may not fully exploit
the knowledge embedded in pre-trained models. In this paper,
we propose a novel approach to address this gap by introducing
a method for transferring knowledge from a pre-trained XML
classifier to enhance zero-shot learning capabilities. We present
experimental results that demonstrate the potential of knowledge
transfer from pre-trained XML classifiers as a promising avenue
for advancing zero-shot learning in the challenging context of
extreme multi-label classification.

Index Terms—zero-shot learning, extreme multi-label classifi-
cation, semantic embeddings

I. INTRODUCTION

Extreme multi-label (XML) text classification is the task of
assigning the most relevant labels taken from an extremely
large label set to a given document. One of the applications
of XML classification is to represent the semantic content
of a document with its key concepts (semantic text tagging).
This task is of particular importance for scientific document
collections: as the number of scientific papers getting pub-
lished is rapidly increasing, semantic tagging becomes crucial
to support the discovery of new scientific results as well as
exploratory efforts within a new field of interest.

This paper addresses a zero-shot learning scenario of XML,
i.e., predicting unseen, or zero-shot labels, which are not
present during the training phase. Zero-shot labels frequently
occur in XML tasks, as label sets evolve over time and new
labels arise. To incorporate new labels, traditional classifica-
tion approaches would require to relabel the training set and
to retrain the model from scratch. This process is particularly
time-consuming and demanding when dealing with extreme
scales, where the size of the training set can reach millions of
data points [1]. The majority of XML classifiers circumvent
this problem and operate under the assumption that the label
space is fixed, and thus are inherently incapable of predicting
unseen labels [2]–[4].

The common approach to zero-shot learning classification
is to project data points and labels close together in a dense

shared embedding space and subsequently leverage nearest
neighbor search to predict labels relevant to a given data point.
A new label is then included into the scheme by mapping
it onto the same space, enabling it to be handled alongside
existing labels. Although this approach proved effective [5],
[6], it still requires to devise and train complex models to learn
effective embeddings and representations of the input features
and labels. On the other hand, there exist a handful of powerful
XML classifiers that have been pre-trained and optimized for
specific datasets and that showcase high performance in their
specialized domains. Intuitively, knowledge learned from a
traditional XML task can be reused to boost the performance
on zero-shot label prediction. As such, the research question
we aim to explore in this paper is the following:

RQ: Is it viable to transfer knowledge from a pre-trained XML
classifier to enhance zero-shot label prediction?

More specifically, we selectively combine semantic embed-
dings of seen labels predicted by a pre-trained XML classifier
weighted by their corresponding probabilities. Subsequently,
we compare the resulting representation with previously un-
seen labels, selecting the most similar candidates. For example,
if a classifier predicts labels CONVOLUTION and ARTIFICIAL
NEURAL NETWORK with probabilities 0.96 and 0.81 for a
given document, their combined representation might be sim-
ilar to the representation of a new label CONVOLUTIONAL
NEURAL NETWORK:

0.96 ∗ embConv. + 0.81 ∗ embANN ≈ embCNN

To further enhance prediction accuracy, we combine the
representation obtained from predicted labels with the input
document representation.

Our method for zero-shot label prediction offers numerous
advantages compared to traditional approaches:

1) Efficiency: it does not require additional training and can
be employed as an add-on to existing XML models.

2) Compatibility: it is compatible with any probabilistic
XML classifier, allowing it to fully benefit from recent
advances in the field of XML classification.

3) Scalability: it is agnostic to the size of the label set,
making it adaptable to large label sets and allowing for
a scalable implementation.
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II. RELATED WORK

Extreme Multi-Label Classification. Traditional XML ap-
proaches can be divided into three groups [7]: (i) one-vs-
all methods independently train a binary classifier for each
label [8], [9], (ii) tree-based methods recursively partition the
instance set or the label set and at each non-leaf node train a
classifier focusing on a small subset of the original problem
[10], while (iii) embedding-based methods project labels onto
a low-dimensional vector space and perform classification
using nearest-neighbor search [11], [12].

Over the last few years, there have been a growing number
of works that demonstrate the efficiency of deep learning
for XML classification [2]–[4]. Among these, AttentionXML
[2] is notable for its high prediction accuracy and consistent
performance across various datasets. AttentionXML features a
BiLSTM architecture and leverages the attention mechanism
to capture fine-grained dependencies between input documents
and labels. We use AttentionXML as a base XML classifier
in the present work.

Zero-Shot Learning. While zero-shot classification has
been extensively studied, the majority of existing research
primarily focuses on multi-class learning, with only a limited
number of approaches addressing multi-label learning. Among
them, ZestXML [5] achieves state-of-the-art performance on
the Generalized Zero-Shot XML task through projecting data
points and labels onto the same high-dimensional vector space.
Rios et al. [13] leverage Graph Neural Networks for incorpo-
rating structural information about the label space into label
representation. Mullenbach et al. [14] utilize a convolutional
network with attention for predicting medical codes from
clinical texts. Chalkidis et al. [6] conducted a notable study,
empirically evaluating various XML methods in the context
of zero-shot learning. Among multi-class approaches, ConSE
[15] stands out as a noteworthy example that inspired our
present work. ConSE predicts zero-shot classes by employing
a convex combination of semantic embeddings derived from
classes that were available during training. How to adapt this
approach to multi-label classification, however, remains an
open research question.

III. METHOD

Our approach, hereafter referred as XML0, consists of two
components: a label fusion module and a semantic similarity
module. We first generate a combined representation of seen
labels predicted by a pre-trained XML classifier and calculate
the cosine similarity between this representation and unseen
labels (label fusion module). Next, we measure the cosine
similarity between the input document and unseen labels
(semantic similarity module). Finally we combine both scores
for each unseen label to produce the final ranking. The overall
architecture of XML0 is depicted in Figure 1. In the following,
we describe each of those components in more detail.

A. Label Fusion Module
The objective of label fusion is to leverage knowledge

obtained by a pre-trained XML classifier for predicting new
labels that were not part of the initial training dataset. Our

Fig. 1. XML0 Architecture - The diagram illustrates the key components of
XML0: the label fusion module (left), the semantic similarity module (top
right), and the final score generation module (bottom right).

label fusion module was motivated by ConSE [15], which
maps images onto the semantic embedding space via a convex
combination of the class embedding vectors. For example, if
an image is classified as lion with probability 0.6 and as tiger
with probability 0.4, then the predicted semantic embedding,
f(x) = 0.6 · s(lion) + 0.4 · s(tiger), will point to somewhere
between lion and tiger in the semantic space, which might
be close to a new, previously unseen class liger.

However, extending this approach to the multi-label classi-
fication problem is not straightforward. In contrast to multi-
class classification, in a multi-label scenario each instance
can belong to multiple classes, and their convex combination
does not necessarily produce a meaningful new class. For
example, the following labels, assigned to a single document,
encompass at least three distinct topics (highlighted with
different colors) discussed within the text: [Artificial intelli-
gence, Medical imaging, Computer vision, Modular design,
Pipeline (software)]. A new label can potentially result from
any combination of these labels or diverge entirely from them.
Building on this observation, our label fusion module performs
an exhaustive search among all possible combinations of
predicted labels selecting the most meaningful combination
w.r.t. each new label.

Our label fusion module requires a pre-trained XML classi-
fier X and a label encoder E as input. The classifier estimates
probabilities of a given document d belonging to each class
(label), while the encoder generates semantic embeddings for
labels from their textual form (title and/or definition). The label
fusion algorithm starts with applying an XML classifier to
a given document, obtaining estimated probabilities for seen
labels. Following this, it identifies a subset of these labels,
denoted as P , by selecting labels with predicted probabilities
surpassing a specified threshold, and generates all possible
combinations {Ck

n|1 ⩽ k ⩽ n} from this selected subset.
Subsequently, for every combination cj ∈ Ck

n, a unified
semantic representation is generated as the sum of the se-
mantic embeddings of labels weighted by their corresponding
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probabilities:

repr(cj) =
∑

prob(li) · E(li),

where li ∈ cj and prob(li) = X (li|d). In the final step, the al-
gorithm computes the cosine similarity between combinations
and unseen labels. For each label, it chooses the combination
with the highest similarity score. Subsequently, unseen labels
are ranked based on these scores. The above process is
described by the high-level pseudo code in Algorithm 1.

Algorithm 1 Label fusion algorithm
Input: XML classifier X , label encoder E , threshold t, doc-

ument d, unseen labels U = {lu}, seen labels S = {ls}
Output: ranked unseen labels Uranked

1: O ← evaluate X (d, S);
2: P ← {(lsi , probi) |lsi ∈ S, probi ∈ O, probi > t};
3: Ck

n ← generate all possible combinations from P ;
4: Cemb ← ∅;
5: for cj ∈ Ck

n do
6: cemb

j ← 0;
7: for (lsi , probi) ∈ cj do
8: cemb

j + = probi · E(lsi );
9: end for

10: add cemb
j to Cemb;

11: end for
12: for lui ∈ U do
13: ranki ← max(cos sim(Cemb, lui ));
14: end for
15: Uranked ← rank lui ∈ U by ranki;
16: return Uranked;

B. Semantic Similarity Module
The goal of the semantic similarity module is to integrate the

content of an input document to further boost the performance
of XML0 on zero-shot labels.

During this stage, we encode both the input documents and
the textual representations of unseen labels, subsequently mea-
suring the pairwise cosine similarity between them. Following
this computation, labels are systematically ranked based on
their similarity scores with respect to each document. This
ranking process provides a structured evaluation of label rele-
vance and alignment with the content of the input documents.

Depending on the dataset under consideration, the textual
representation of a label can be articulated through its title
and/or definition. In our experimental framework, we adopt
the title and the initial paragraph of the abstract extracted from
the corresponding Wikipedia page as the means to represent
the labels.

Following recent advances in language modeling us-
ing attention-based transformers, we adopt Sentence-BERT
(SBERT) [16] as an encoder for documents and labels. SBERT
is a modification of the BERT model [17] able to derive fixed-
sized vectors for input sentences. To refine SBERT for our
specific task, we engaged in further fine-tuning. Specifically,
we randomly selected two million (d, l) pairs from the training
set, where d represents a document and l denotes the textual

TABLE I
DATASET STATISTICS

Ntrain Ntest Ltotal Lzs Wd Wl

MAG-CS 560,058 18,024 15,303 504 87 73.8
Ntrain: #training instances, Ntest: #test instances, Ltotal: #labels total,

Lzs: #labels zero-shot, Wd: avg #words per doc, Wl: avg #words per label.

TABLE II
PERFORMANCE COMPARISON OF XML0 AND OTHER COMPETING

METHOD ON MAG-CS DATASET

Algorithms Prec@1 Prec@3 Prec@5 nDCG@3 nDCG@5

ZESTXML 0.2275 0.1141 0.0760 0.2623 0.2751
CONSE 0.1943 0.1399 0.1040 0.3025 0.3406
SBERT 0.2800 0.1584 0.1131 0.3550 0.3871

XML0LF 0.2478 0.1398 0.0996 0.3242 0.3537
XML0 0.2994 0.1695 0.1223 0.3768 0.4143

form of a label. During the training process, our objective
was to minimize the cosine similarity between d and l if
l is relevant to d and to maximize it otherwise. This fine-
tuning strategy aimed to enhance SBERT’s capacity to capture
and distinguish the nuanced semantic relationships between
documents and their associated labels.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setting

Dataset. In our work, we specifically focus on collections of
scientific papers. Therefore, we evaluate our method using
the Microsoft Academic Graph (MAG) [18] dataset. MAG
is a heterogeneous graph containing scientific publication
records labeled with relevant concepts. Following [19], for
our experiments we use a subset of MAG focusing on the
computer science domain - we refer to this dataset as MAG-
CS. As MAG-CS does not contain unseen labels, we further
generate a zero-shot version of it, randomly dropping 500
labels from the training set, while retaining them in the test
set. To ensure the robustness of our evaluation, we repeated
this process three times. In the rest of this section, we will
report average values across the three zero-shot snapshots of
MAG-CS. In this study, our main focus is on zero-shot labels.
Consequently, we exclude labels that were part of the training
set from the test set, aiming to assess the model’s performance
specifically on unseen labels. We report important statistics
from our dataset in Table I.
Baselines. We compare our method against the following zero-
shot classification approaches:

• ZestXML [5] focuses on the Generalized Zero-shot XML
(GZXML) task, whose goal is to select relevant labels
from both seen and unseen labels. ZestXML learns to
project a data point’s features close to the features of
its relevant labels through a highly sparsified linear
transform. To ensure a fair comparison, we assess the
performance of ZestXML exclusively on unseen labels.

• ConSE [15] is an image classification model, which
maps images into the semantic embedding space via a
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convex combination of the embedding vectors of classes,
predicted for each image. To apply ConSE to our task, we
implemented a naive version of our label fusion module,
which considers a single combination of top predicted
labels, i.e., Cn

n .
• SBERT [16] is a sentence embedding model that utilizes

a siamese network architecture to learn semantically
meaningful representations for sentences in a way that
preserves their pairwise semantic similarity. In the context
of the present work, the SBERT baseline corresponds to
our semantic similarity module without label fusion.

We additionally evaluated the ablated version of our model,
XML0LF , which includes the Label Fusion module only, to
understand the contribution of this specific module to the
overall performance. In both XML0 and XML0LF we used
AttentionXML [2] as the XML classifier and SBERT with
all-MiniLM-L6-v21 as the label encoder.

Metrics. In line with previous XMLC works [2], [4], [19],
we use P@k (Precision at k) and nDCG@k (normalized
Discounted Cumulative Gain at k) as evaluation metrics. P@k
is defined as the number of correct predictions considering
only the top k elements divided by k. Discounted cumulative
gain (DCG) measures the quality of rankings, assigning higher
scores to hits at top ranks. nDCG is a normalized version of
DCG, which accounts for the varying number of positive labels
per instance.

B. Results and Discussion

We summarize the results of our experiments in Table II.
Our proposed approach outperforms all competing methods,
which demonstrates the effectiveness of integrating informa-
tion obtained from input documents with knowledge trans-
ferred from a pre-trained XML classifier.

The comparison with the SBERT model is particularly
intriguing, as it also serves as an ablation study. The SBERT
baseline corresponds to the semantic similarity module of
our approach, and highlights the performance improvement
achieved by incorporating information from predicted labels.

The observation that XML0LF outperforms ConSE on most
metrics validates our hypothesis that, in multi-label classifica-
tion, a straightforward combination of all top predicted labels
may lead to sub-optimal performance. This supports our deci-
sion to conduct a comprehensive search across combinations.

Surprisingly, ZestXML exhibits the lowest performance,
despite the promising results reported by [5] on other datasets.
This phenomenon might in part be attributed to the specific
characteristics of the MAG-CS dataset. Indeed, the labels in
MAG-CS boast extensive textual descriptions, being linked to
Wikipedia articles. ZestXML employs Bag-of-Words (BoW)
feature vectors for label encoding, while other methods lever-
age transformers. Transformers excel at capturing sequential
information and handling long-term dependencies, making
them more suitable for understanding the complexities of
longer texts compared to traditional BoW models.

1https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

V. CONCLUSION AND FUTURE WORK

In this paper, we explored the viability of leveraging labels
predicted by a pre-trained classifier for the task of zero-shot
XML classification. Our experimental results demonstrate the
potential of this approach and suggest a valuable avenue for
enhancing the efficiency and adaptability of zero-shot XML
classifiers. As part of future work, we aim to devise a more
efficient method for retrieving the optimal combination of
labels and validate our results on additional datasets.
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