
Follow the Path: Hierarchy-Aware Extreme Multi-Label
Completion for Semantic Text Tagging

Natalia Ostapuk
University of Fribourg
Fribourg, Switzerland

natalia.ostapuk@unifr.ch

Julien Audiffren
University of Fribourg
Fribourg, Switzerland

julien.audiffren@unifr.ch

Ljiljana Dolamic
armasuisse S+T

Thun, Switzerland
ljiljana.dolamic@ar.admin.ch

Alain Mermoud
armasuisse S+T

Lausanne, Switzerland
mermouda@ethz.ch

Philippe Cudré-Mauroux
University of Fribourg
Fribourg, Switzerland

pcm@unifr.ch

ABSTRACT

Extreme Multi Label (XML) problems, and in particular XML com-
pletion – the task of prediction the missing labels of an entity –
have attracted significant attention in the past few years. Most
XML completion problems can organically leverage a label hierar-
chy, which can be represented as a tree that encodes the relations
between the different labels.

In this paper, we propose a new algorithm,HECTOR – Hierarchi-
cal Extreme Completion for Text based on TransfORmer, to solve
XML Completion problems more effectively. HECTOR operates by
directly predicting paths in the label tree rather than individual la-
bels, thus taking advantage of information encoded in the hierarchy.
Due to the sequential aspect of these paths, HECTOR can leverage
the effectiveness and performance of the Transformer architecture
to outperform state-of-the-art of XML completion methods. Ex-
tensive evaluations on three real-world datasets demonstrate the
effectiveness of our approach for XML completion. We compare
HECTORwith several state-of-the-art XML completionmethods for
various completion problems, and in particular for label refinement,
i.e., the scenario where only the coarse labels (i.e. the first few top
levels in a taxonomy) are observed. Empirical results on three dif-
ferent datasets show that our method significantly outperforms the
state of the art, with HECTOR frequently outperforming previous
techniques by more than 10% according to multiple metrics.

CCS CONCEPTS

• Computing methodologies→ Supervised learning by clas-

sification.

KEYWORDS

Semantic Tagging, Taxonomy, Extreme Multi-Label Classification,
Label Completion, Transformers

this work is licensed under a Creative Commons Attribution
International 4.0 License.

WWW ’24, May 13–17, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0171-9/24/05.
https://doi.org/10.1145/3589334.3645558

ACM Reference Format:

Natalia Ostapuk, JulienAudiffren, LjiljanaDolamic, AlainMermoud, and Philippe
Cudré-Mauroux. 2024. Follow the Path: Hierarchy-Aware Extreme Multi-
Label Completion for Semantic Text Tagging . In Proceedings of the ACMWeb
Conference 2024 (WWW ’24), May 13–17, 2024, Singapore, Singapore. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3589334.3645558

1 INTRODUCTION

As the number of textual documents has grown exponentially over
the past decades [7], Multi-Label text Classification (MLC), which
is the task of assigning the most relevant subset of labels to docu-
ments, has received significant attention [17, 33, 36]. Indeed, MLC
is able to represent the semantic content of a document using key
concepts (also known as semantic tags), which in turn eases the
organization of information and helps users navigate large text
collections. MLC is crucial, for instance, for scientific document
collections: as the number of scientific papers getting published is
rapidly increasing, semantic tagging becomes key to support the
discovery of new scientific results as well as exploratory efforts
within and across fields of interest [31]. Another important appli-
cation of MLC is the semantic annotation of text documents on
the Web. Indeed, annotations such as labels are key to improve the
search and discovery of relevant documents on the Web, both for
search engines and for users. Furthermore, labeling documents with
semantic concepts from standardized ontologies offers additional
benefits for data integration, enabling more effective merging, anal-
ysis, and extraction of meaningful insights from the data. Finally,
these annotations contribute to the creation and enrichment of
knowledge graphs, such as OpenAlex1 – a new open-source sci-
entific knowledge graph, containing metadata for works, authors,
venues, institutions and semantic concepts.

As the number of potential labels has increased dramatically
– collections of thousands to tens of thousands of labels are now
routinely used to tag documents – new dedicated methods called
Extreme Multi-Label text Classification (XMLC) [33] have been
developed. XMLC poses additional computational challenges due
to the large number of labels and the uneven distribution of their
occurrences, typically leading to a long tail of rare labels.

XMLC problems can often benefit from leveraging a label hi-
erarchy, which are frequently developed in real-world settings to
facilitate the management of large collections of labels. For instance,

1https://openalex.org

2094

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3589334.3645558
https://doi.org/10.1145/3589334.3645558
https://openalex.org
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3589334.3645558&domain=pdf&date_stamp=2024-05-13

WWW ’24, May 13–17, 2024, Singapore, Singapore Natalia Ostapuk, Julien Audiffren, Ljiljana Dolamic, Alain Mermoud, and Philippe Cudré-Mauroux

for scientific documents, there exist many well-designed hierar-
chical ontologies and taxonomies of concepts, which can be used
as hierarchy of labels for scientific text tagging [36]. Today, some
of the most popular ontologies in that context include the ACM
CCS2, a poly-hierarchical ontology containing concepts related to
Computer Science, the MeSH thesaurus3, which was developed to
index and search biomedical and health related data, and the Mi-
crosoft Academic Graph (MAG) [31], which provides a taxonomy of
concepts from different domains. These hierarchies impose natural
partial orders on labels, from more general to more specific, and
can provide valuable information for XMLC tasks. Following this
observation, several recent studies have proposed approaches to
embed this meta-information into the XMLC problem. Notably, [5]
proposed to learn an embedding of the label space by first perform-
ing a clustering of labels using their short descriptions, and thus
reducing the complexity of the output space, while [36] leveraged
metadata by modifying the loss function to force proximity in the
joint embedding space.

An interesting sub-problem of XMLC, which is the focus of this
work, is Extreme Multi-Label Completion (XMLCo), where each
document instance is already tagged with a partial set of labels
that the model has to complete, by leveraging both the document
content as well as existing labels. The problem of incomplete labels
is frequently encountered in many application domains due to
multiple compounding factors, including the subjectivity of human
annotators, time-dependent data, the addition of new sub-concepts
as leaves to a taxonomy, time constraints, or privacy concerns. Label
completion plays a crucial role in enhancing the completeness and
accuracy of datasets [26]. This sub-problem is particularly relevant
in the context of hierarchically organized labels, i.e., when labels
are structured into a taxonomy. Indeed, it has been observed that
in this case, data instances are equipped with general, high level
labels, while more specific labels are more often missing [26]. We
refer to the task of adding more specific label to a data instance as
Label Refinement.

In the present work, we introduce a new Transformer-based
encoder-decodermodel for XMLCo, namedHECTOR4 (Hierarchical
Extreme Completion for Text based on TransfORmer), which di-
rectly takes advantage of the hierarchical structures of the label
space to better predict missing labels and solve Label Refinement.
Transformers [30] have demonstrated state-of-the-art results on
many NLP-related tasks, such as document summarization, text
generation, or named entity recognition [29], and in particular have
been successfully applied to XMLC [5, 13]. However, to the best
of our knowledge, previous applications focused on the encoder
part of the original Transformer architecture [5], and labels were
predicted as an unstructured set (see [13] and references therein), as
they do not intrinsically possess a sequence structure. Conversely,
our technique HECTOR fully leverages the sequence-to-sequence
(Seq2Seq) nature of Transformers, i.e., both the encoder and the
decoder parts, by predicting paths in the hierarchy of labels. This
approach has two significant advantages:

2https://dl.acm.org/ccs
3https://www.nlm.nih.gov/mesh/meshhome.html
4https://github.com/eXascaleInfolab/HECTOR

(1) HECTOR benefits from the performance of Transformer on
Seq2Seq tasks, which have been proven to be very effective
for MLC tasks [24].

(2) HECTOR organically leverages all the meta-information con-
tained in the hierarchical tree organizing the labels, without
needing to enforce it through pre-training or regularization.

We evaluate the effectiveness of our approach through a wide range
of experiments of label completion, with particular focus on Label
Refinement – the case of label completion where general labels
are provided, i.e. labels representing broader categories or higher-
level concepts in the hierarchy. Our evaluation results highlight
the advantage of HECTOR over existing methods, and show that
it significantly outperforms other methods for label refinement
on a wide range of metrics and on three datasets, with HECTOR
frequently outperforming previous techniques by more than 10%
according to multiple metrics.

The rest of the paper is organized as follows. In Section 2, we
provide some background information and review related works
on XMLCo. We present our approach and HECTOR’s architecture
in Section 3. Section 4 introduces our experimental results.

2 BACKGROUND AND RELATEDWORK

ExtremeMulti-Label ClassificationTraditionalMLC approaches
can be divided into three groups: one-vs-all, embedding-based and
tree-based methods [16]. One-vs-all methods independently train a
binary classifier for each label. In extreme settings with thousands
of labels, this approach can be prohibitively expensive. To reduce
training complexity and model size, different techniques were pro-
posed, among them parameter thresholding [1], label filtering [19],
learned label trees [14, 22] and negative sampling [11]. Tree-based
methods recursively partition the instance set or the label set and
at each non-leaf node train a classifier focusing on a small subset
of the original large-scale problem [12, 21, 23]. Embedding methods
aim at learning the latent low dimensional vector space of the labels,
and perform classification by finding the nearest label neighbors
for each test instance [2, 10, 28]. Closer to the present work, there
have been a growing number of works demonstrating the efficiency
of deep learning for the XMLC task in the last few years. XML-CNN
[15] is one of the pioneers in this area, proposing to apply a con-
volutional neural network (CNN) to learn the text representation.
More recently, [33] introduced AttentionXML, which leveraged a
multi-label attention mechanism and shallow probabilistic label
trees (PLT). X-Transformer [5] was the first attempt to fine-tune
deep Transformer models to the XMLC task, and was then further
improved by [35] through the use of recursive fine-tuning. Finally,
[13] analyzed different types of Transformer-derived architecture
for the XMLC task, and show that models using a Seq2Seq approach
tend to perform better – a prime motivation behindHECTOR. How-
ever, compared to these methods, HECTOR is able to efficiently
leverage the hierarchical taxonomy of the labels.
Hierarchical Multi-Label Classification Hierarchical classifiers
have long been used in MLC [3], and recent works have proposed
strategies to enhance XMLC methods using the structure of la-
bels. [8] proposed to incorporate the tree of labels directly into
the architecture of the neural network, while Gargiulo et al. [9]
proposed a convolutional neural network to address this task. More

2095

Follow the Path: Hierarchy-Aware Extreme Multi-Label Completion for Semantic Text Tagging WWW ’24, May 13–17, 2024, Singapore, Singapore

recent work has combined ideas from Hierarchical Multi-Label and
transformers. MATCH [36] used hierarchical relations among labels
for regularization, enforcing each label to be similar to its parents,
while Caled et al. [3] introduced a recurrent neural network with a
hierarchical output layer, where each deeper level gets predictions
from the previous levels as an additional input. However, to the
best of our knowledge, HECTOR is the first to predict a path di-
rectly following the hierarchy of labels, thus combining the Seq2Seq
strengths of transformers with Hierarchical Multi-Label strategies.
Label Completion Many label completion techniques rely on ma-
trix completion, where the correlation between labels occurrences
is used to predict missing labels. For instance, [6] proposed an
approach that utilizes both local and global attention to enhance
matrix completion. However, these methods generally do not scale
to XMLCo problems, due to the size of the dataset and the number
of labels. To address the challenge of extreme scale, [26] presented
REASSIGN, a hierarchical approach to complete the annotation of
genes with biological functions. They first train a global classifier
which predicts probabilities of each label independently, and then
aggregate these probabilities along the path in a hierarchical label
tree to compute final probabilities for leaf labels. In contrast to
these methods, HECTOR harnesses the power of Transformers’
performance and directly embeds the label tree by predicting paths
on this tree.

3 METHOD

3.1 Intuition

We begin by introducing the intuition behind HECTOR, and the
use of Transformers for XMLCo problems. First, positive labels
assigned to a document are usually represented by specific tokens
in an input document. Transformers, through their cross-attention
mechanism, are able to take into account fine-grained dependencies
between tokens, and focus on the most relevant parts of the input se-
quence with respect to each label. The advantages of this approach
has been demonstrated by previous work, that used attention mech-
anisms and Transformers to achieve state-of-the-art performance
on XMLCo, such as AttentionXML [33] and XR-Transformer [35].
Second, the available label hierarchy contains valuable information
that can be used for XMLCo. For example, the presence of label SQL
can be a strong indicator of relevance for label RDBMS and vice
versa. This idea is at the heart of many successful label completion
approaches such as [26]. A notable previous approach to label corre-
lation modeling was proposed in [25], where authors constructed a
chain of binary classifiers (one for each label) and where the output
of each following classifier was conditioned on outputs of all previ-
ous classifiers. Interestingly, this multi-label classification approach
with a chain of classifiers is similar to the decoding process in a
Seq2Seq model, where an output sequence is generated one token
at a time, with each subsequent token being conditioned on the
previously generated tokens. HECTOR combines these two ideas,
by using a novel paradigm for multi-label completion: instead of
predicting individual labels, it predicts paths in a label tree.

3.2 Path Prediction

In the rest of this paper, we assume that labels are organized hi-
erarchically, e.g., in a taxonomy. In particular, we assume that the

(a) Taxonomy

(b) Set of Labels (c) Set of Paths

Figure 1: Converting a set of labels into a set of paths lever-

aging a label hierarchy

taxonomy abides by the hierarchy constraint [26], and therefore
can be represented as a tree. Hereinafter we will use the terms
taxonomy and label tree5 interchangeably to refer to the hierarchi-
cal label structure. Using the taxonomy, we model a set of labels
assigned to a document as a set of paths in a label tree, as shown
in Figure 1. As opposed to a set of labels, each path does naturally
yield a sequence structure, and thus can be used in Seq2Seq models.

Path Completion. It is important to note that while many XMLC
datasets may abide by the hierarchy constraint [26], the set of
labels assigned to each document may be incomplete, i.e., they do
not constitute complete paths in the tree. This is due to the fact
that labels are sometimes assigned inconsistently: for instance, in
some cases only leaves are included, whereas in other cases top-
level labels and some leaves are included, but not all labels in the
middle of the paths. We thus complete the label sets for each data
point by adding all the missing ancestors to each label in order to
obtain coherent paths, similarly to Hierarchical Label Set Expansion
proposed by [9]. Formally, we proceed as follows: first, for each
label 𝑙 𝑗 from the original label set L, we build a path 𝑝 𝑗 from the
root of the label tree to 𝑙 𝑗 . Then, we update L with labels 𝑙𝑘

𝑗
∈ 𝑝 𝑗 ,

if 𝑙𝑘
𝑗
∉ L.

In this paper, we operate on datasets modified as described above,
i.e., with positive label sets extended to contain full paths in a label
tree. For example, using a toy taxonomy from Figure 1(a), if the
original label set consists of labels L ={ NLP, Logistic Regression},
its completed version will be L′ ={NLP, Logistic Regression, Ma-
chine Learning}6. We reformulate a multi-label completion task as
a path decoding task, which is summarized below:

5A taxonomy can also have a graph structure, but within the present research we focus
on trees and leave more complex data structures for future work.
6We do not add the root label to the label set since it is trivial to predict.

2096

WWW ’24, May 13–17, 2024, Singapore, Singapore Natalia Ostapuk, Julien Audiffren, Ljiljana Dolamic, Alain Mermoud, and Philippe Cudré-Mauroux

(1) Preprocessing: complete and regroup positive labels as-
signed to each document to form a set of paths in the tree.

(2) Training: train a Seq2Seq model, where a document is an
input sequence, and a path is a target sequence.

(3) Inference: given an input document and an incomplete
set of labels, decode path(s) in the label tree. they are then
merged and sorted by label scores to generate a final ranking
of labels, which is then used for prediction.

One additional advantage of our approach is that labels in a
path are decoded sequentially, from the most general concepts (first
level of the taxonomy) to more specific concepts. We argue that
this approach is particularly well suited for label completion, as
illustrated by our experiment results (see Section 4).

3.3 Model Architecture

In this subsection, we introduceHECTOR – aHierarchical Extreme
Completion for Text Based on TransfORmer. HECTOR’s architec-
ture is based on Transformers [30] – the last generation Seq2Seq
model, which proved extremely efficient on several NLP tasks. Sim-
ilar to previous Seq2Seq models, Transformers utilize an encoder-
decoder architecture, but they dispenses with recurrence and con-
volutions relying entirely on the attention mechanism to compute
representations of their input and output. More specifically, Trans-
formers feature the following types of attention:

• Encoder self-attention: Encodes the context of each word
based on the entire input sequence.

• Decoder self-attention: Considers the influence of previous
generated tokens on the current token generation step.

• Encoder-decoder cross-attention: Focuses on relevant parts
of the encoder’s output during the generation process.

In the context of our task, these three types of attention perform
the following functions: the encoder self-attention learns contextu-
alized embeddings of tokens in the input document; the encoder-
decoder cross-attention captures fine-grained dependencies be-
tween input tokens and output labels; the decoder self-attention
considers previously predicted labels to generate a coherent path in
the label tree. HECTOR’s architecture is outlined in Figure 2. In the
following, we introduce the main components of the Transformer
as well as the key changes we made to them.
Encoder. The encoder in the Transformer model extracts features
from the input sequence, enabling the model to capture the rela-
tionships between the input tokens and create rich representations
for further processing by the decoder. The encoder is composed
of a stack of 𝑁 = 6 identical layers. Each layer consists of a multi-
head self-attention mechanism and a fully connected feed-forward
network with a residual connection. In HECTOR’s encoder, we
mostly follow the original Transformer architecture with some spe-
cific changes. We use pre-trained GloVe embeddings [20] as our
initial word representation, hence both encoder input and output
are 300-dimensional. For this reason, we also changed the number
of attention heads from 8 to 12 (as a rule of thumb, model dimension
should be dividable by the number of heads).
Decoder. The decoder in the Transformer model takes the encoded
input and uses attention mechanisms to generate a coherent output
sequence, capturing contextual relationships between the generated

tokens. During training, the decoder takes the ground-truth output
sequence in addition to the encoder output to learn dependencies
between output tokens – this algorithm is referred to as teacher
forcing. During inference, the decoder takes the encoder output and
generates the output sequence from scratch, one token at a time. As
the encoder, the decoder is composed of a stack of 𝑁 = 6 identical
layers, with an additional encoder-decoder cross-attention block
at each layer. As opposed to traditional Seq2Seq tasks, where both
input and output sequences consist of words, in our case the output
is a sequence of labels. In natural language there are synonymous
words that are semantically similar, therefore their embeddings can
be very close to each other in the vector space. On the other hand,
in the label space all embeddings should be clearly separated, as we
assume that there are no semantically similar labels. For better dis-
tinguishability, we increase the dimensionality of label embeddings
from 𝑑 = 300 to 𝑑 = 600. Label embeddings are initialized randomly
and learned during the training phase. Since in the Transfomer
model the encoder output and decoder input should be of the same
dimension, we add an additional fully connected layer between the
encoder and the decoder, which performs dimensionality expansion.
We refer to this component as the Adapter. We empirically investi-
gate the effect of the increased dimensionality of label embeddings
in Section 4.3.
Prediction Layer. The decoder generates contextualized label rep-
resentations, which are projected onto final |𝑉 |-dimensional vec-
tors, where |𝑉 | is the size of the label vocabulary. Each element of
the resulting vector represents the probability of the correspond-
ing label. The prediction layer consists of a fully-connected layer
followed by a Softmax activation function.
Loss Function. Following the original Transformer architecture,
we use the Kullback-Leibler divergence loss, which measures the
dissimilarity between two probability distributions. During training,
we use label smoothing of value 𝜖𝑙𝑠 = 0.2 [27]. Label smoothing
is a regularization technique, which involves replacing the one-
hot encoding of the target labels with a smoothed distribution.
Instead of assigning a probability of 1 to the true label and 0 to
all other labels, label smoothing assigns a confidence score to the
true label and redistributes the smoothing mass among the other
labels. In HECTOR, we introduce some prior knowledge about the
label taxonomy into the loss function. Since we aim at decoding
tree paths rather than unstructured sequences, we know in advance
which labels can occur at each position. Thus, at the 𝑖-th position
only labels from the 𝑖-th level (i.e., at depth 𝑖) of the taxonomy
can appear. We leverage this knowledge by applying a mask onto
the labels, such that the smoothing mass is redistributed on the
corresponding level, setting the probabilities of all other labels to 0.
We discuss the impact of this approach in Section 4.3.
Training. In multi-label problems, each document can have labels
from different (sub)-domains, resulting in multiple paths in the
label tree. During training, we randomly select one path per docu-
ment as the ground-truth for each training epoch. The idea behind
this approach is to introduce some variability during training and
avoid overfitting to a specific output sequence – in line with the
observations of [32]. By randomly selecting one of the possible
output paths as the ground-truth during training, the model learns
to generate all the possible output paths with equal probability.

2097

Follow the Path: Hierarchy-Aware Extreme Multi-Label Completion for Semantic Text Tagging WWW ’24, May 13–17, 2024, Singapore, Singapore

Figure 2: HECTOR’s model architecture

3.4 Label Completion with HECTOR

During inference, HECTOR receives the path prefix containing
known labels. We utilize beam search to generate multiple paths
for each data point and predict missing labels. In contrast to greedy
search, which selects the candidate with the highest probability
at each step, beam search maintains a set of the most promising
candidate sequences, known as the beam. Formally, the algorithm
proceeds as follows:

• The model generates a set of candidate labels for position 𝑖 .
• The top-k candidates with the highest probabilities are se-
lected, where 𝑘 is the beam width.

• The selected candidates are appended to preceding partial
sequences (predicted labels from positions 1 through 𝑖 − 1)
and joint probabilities of extended sequences are computed.

• The top-k extended sequences are passed to the next step
for generating a set of candidate labels for position 𝑖 + 1.

The beam search algorithm aims at maximizing probabilities
of full sequences rather than individual elements of a sequence.
Additionally, it allows decoding multiple sequences simultaneously,
which is important in the context of our task since each document
may have multiple relevant label sequences. After performing beam
search, we merge all decoded paths in a flat list and sort labels by
their individual probabilities to produce the final ranking. Formally,
we proceeded as follows. For a document 𝑑 , let P(𝑙 𝑗 |𝑙1, . . . 𝑙 𝑗−1)
denote the predicted probability of observing label 𝑙 𝑗 given the path
𝑙1, . . . 𝑙 𝑗 −1.We compute the path-independent marginal probability
of the label 𝑙 𝑗 as

P(𝑙 𝑗) = max
possible paths 𝑙1,...,𝑙 𝑗−1

(
𝑗∏

𝑖=1
P(𝑙𝑖 |𝑙1, . . . 𝑙𝑖−1)

)
In other words, we take the maximum probability of the label
occurring across all possible paths in the taxonomy.

4 EXPERIMENTAL EVALUATION

In this section, we extensively evaluate HECTOR on label refine-
ment tasks. As introduced above, label refinement is an important
task in practice (as new concepts are typically appended as leaves
in the taxonomy) and a special case of label completion, where
documents are labeled with general concepts (corresponding to the
first level(s) of a label hierarchy), and the algorithm is tasked to
predict more specific (lower level) concepts. The exact nature of
the task depends on the level 𝐿, from which we start the refinement
process, i.e., we assume that labels from level 1 to 𝐿−1 are observed.
Interestingly, since the taxonomies we study abide by the hierarchy
constraint and are complete (see Section 3.2), all label completion
tasks can be seen as label refinement, since predicting general labels
given specific labels is trivial in this setting. Furthermore, the XML
classification task can be seen as a specific case of label refinement
with 𝐿 = 1 (since the root of the tree is common to all data points,
thus not bringing any information).

4.1 Experimental Setting

Datasets. We evaluate our method on three well-known and large-
scale datasets: MAG-CS, PubMed and EURLex.

• MAG-CS. The Microsoft Academic Graph (MAG) Computer
Science (CS) is a subset of the MAG dataset [31] focused on
the computer science domain, containing papers published
at 105 top CS conferences from 1990 to 2020, while the label
tree contains relevant concepts descendants of the root-level
“Computer Science” [36].

• PubMed.We use a subset of PubMed released by [36], which
comprises papers published in 150 top journals in medicine
from 2010 to 2020. Each PubMed paper is labeled with rel-
evant concepts from the Medical Subject Headings (MeSH)
hierarchically-organized thesaurus.

• EURLex. EURLex [18] is one of the most common XMLC
benchmark datasets. It contains English EU legislative doc-
uments from the EUR-LEX portal7, tagged with concepts
(labels) from the European Vocabulary (EuroVoc)8. We use
the latest version of EURLex released by [4] in 2019.

We further expanded the label sets for each data point so that they
constitute complete paths in the tree, as described in Section 3.2.
We report important statistics from our datasets in Table 1, and
Figure 3 summarizes label distribution per level in 3 datasets.
Baselines.We compare ourmethodwith the following deep learning-
based XMLC models and label completion methods:

• XML-CNN [15] uses a convolutional neural network with
dynamic pooling to learn representations of input documents
and to project them onto the output label space.

• AttentionXML [33] first builds a shallow probabilistic label
tree (PLT) to partition labels, and then for each level of the
PLT trains a deep learning model with multi-label attention.

• MATCH [36] leverages documents metadata and a label
hierarchy for extreme multi-label classification.

7https://eur-lex.europa.eu/
8EuroVoc is EU’s multilingual and multidisciplinary thesaurus. It contains key-
words, organized in 21 domains and 127 sub-domains in a hierarchical manner
https://publications.europa.eu/en/web/eu-vocabularies

2098

WWW ’24, May 13–17, 2024, Singapore, Singapore Natalia Ostapuk, Julien Audiffren, Ljiljana Dolamic, Alain Mermoud, and Philippe Cudré-Mauroux

Table 1: Dataset statistics

𝑁𝑡𝑟𝑎𝑖𝑛 𝑁𝑡𝑒𝑠𝑡 𝐿 𝐿 𝑃 𝑊 𝐻

MAG-CS 89,920 54,008 2,641 4.4 2.9 87 6
PubMed 100,042 39,890 5,911 18.5 3.3 142 15
EURLex 45,000 6,000 4,492 10.4 4.9 288 7

𝑁𝑡𝑟𝑎𝑖𝑛 : #training instances, 𝑁𝑡𝑒𝑠𝑡 : #test instances, 𝐿: #labels, 𝐿:

average #labels per instance, 𝑃 : average #paths per instance,

𝑊 : average #words per instance, 𝐻 : height of the label tree.

• XR-Transformer [34] relies on pre-trained Transformers
which are recursively fine-tuned on a series of easy-to-hard
training objectives defined by a hierarchical label tree.

• REASSIGN [26] aggregates probabilities of individual labels
along paths in the label hierarchy and select paths with
highest aggregated scores.

Implementation and Hyperparameters. All baselines are re-
trained from scratch on our completed versions of the three datasets.
We use GloVe.840B.300d as initialized word emdeddings for all mod-
els. For baselines, we directly use the default hyperparameter values
as provided by the authors. REASSIGN requires a pre-trained clas-
sifier to compute the probability of every instance-label association.
As such, we trained a vanilla Transformer, i.e. the Transformer
encoder for input document representation followed by a fully
connected layer to perform multi-label classification. Our model
HECTOR was trained using the Adam optimizer with an initial
learning rate of 1e-4 and a weight decay of 0.01.
Metrics. In line with previous XMLC works [15, 33, 36], we use
𝑃@𝑘 (Precision at 𝑘) and 𝑁𝐷𝐶𝐺@𝑘 (Normalized Discounted Cu-
mulative Gain at 𝑘) as our evaluation metrics for performance
comparison (hereinafter ranking metrics). 𝑃@𝑘 is defined as the
average number of correct predictions among the top 𝑘 :

𝑃@𝑘 =
1
𝑘

𝑘∑︁
𝑙=1

𝑦𝑟𝑎𝑛𝑘 (𝑙) (1)

where 𝑦 ∈ {0, 1}𝐿 is the vector of true labels, and 𝑟𝑎𝑛𝑘 (𝑙) is the
index of the 𝑙-th top predicted label. Discounted cumulative gain
(DCG) measures the quality of ranking, assigning higher scores to
hits at top ranks. NDCG is a normalized version of DCG, which
accounts for the varying number of positive labels per instance.
𝑁𝐷𝐶𝐺@𝑘 is defined by the following formulas:

𝐷𝐶𝐺@𝑘 =

𝑘∑︁
𝑙=1

𝑦𝑟𝑎𝑛𝑘 (𝑙)
𝑙𝑜𝑔(𝑙 + 1) ; 𝑁𝐷𝐶𝐺@𝑘 =

𝐷𝐶𝐺@𝑘∑𝑚𝑖𝑛 (𝑘, | |𝑦 | |0)
𝑙=1

𝑦𝑟𝑎𝑛𝑘 (𝑙)
𝑙𝑜𝑔 (𝑙+1)

(2)
where | |𝑦 | |0 is the number of positive labels in the true label 𝑦.

To get additional insight about models’ performance on low-
resource (i.e., corresponding to lower levels of taxonomy) classes,
we also report results on 𝑚𝑖𝑐𝑟𝑜_𝑓 1 and 𝑚𝑎𝑐𝑟𝑜_𝑓 1 (hereinafter
classification metrics). 𝑚𝑖𝑐𝑟𝑜_𝑓 1 is calculated globally by count-
ing the total true positives, false negatives and false positives. For

Figure 3: The number of labels per level of ontology

𝑚𝑎𝑐𝑟𝑜_𝑓 1, the metric is calculated for each label, and then their
unweighted mean is computed.

4.2 Label Refinement

Experimental design. For the task of label refinement, each doc-
ument is accompanied with a set of general labels pertaining to
it, and the model must predict more specific labels. In our context,
general labels are the labels that belong to the higher levels of the
taxonomy, while specific labels are labels of deeper levels. In this set
of experiments, we view the label refinement task as a function of
𝐿, where 𝐿 is the level from which we start the refinement process.
For example, when 𝐿 = 3, we assume that a document is labeled
with labels of level 1 and 2 and the task is to predict labels starting
from level 3 and deeper. For the baseline methods, we run a normal
inference step and then skip model predictions of labels from level
1 to 𝐿 − 1, since we assume that all relevant labels of these levels
are provided. Thus we measure the performance on labels of level
𝐿 and deeper. For ranking metrics, we further rank labels by their
predicted probabilities. For classification metrics, we select the best
decision boundary for each model and for each experiment. For
HECTOR, we use labels from level 1 to 𝐿 − 1 associated with a
document as path prefixes and pass them as input to the decoder.
More specifically, we build path prefixes from the provided labels,
pass them to the decoder as a leftward context and predict the next
label(s) in the path starting from the given prefix. All predictions
are then merged into a flat list and sorted by their individual scores
(see Section 3.3 for more details).

Results.We report the key results of our label refinement experi-
ment in Table 2. Interestingly, even when provided with only very
general labels (i.e. labels from the first level of taxonomy),HECTOR
already significantly outperforms the competing methods across
all datasets -– from 2.5% on MAG-CS to 5.9% on EURLex (measured
by 𝑃@1). Furthermore, the advantage ofHECTOR on 𝑃@1 tends
to be even more pronounced for higher values of 𝐿, such as 12%
for 𝐿 = 3 on EURLex. Importantly, while this advantage varies
with the dataset and the structure of the taxonomy, it is present
across all metrics. Notably, AttentionXML performs consistently
good across all datasets and is often a close second to HECTOR by
ranking metrics on MAG-CS and PubMed datasets. This shows that
AttentionXML is a strong baseline for label completion, especially
for scientific document collections. Similarly, Transformer-XR per-
forms well in our experiments, closely following AttentionXML

2099

Follow the Path: Hierarchy-Aware Extreme Multi-Label Completion for Semantic Text Tagging WWW ’24, May 13–17, 2024, Singapore, Singapore

Table 2: Performance comparison of HECTOR and other competing methods on Label Refinement task. 𝐿 denotes the level of

taxonomy, from which the refinement starts. 𝑃@𝑘 – Precision@k; 𝑁@𝑘 – nDCG@k.

L Algorithms

MAG-CS PubMed EURLex

P@1 P@3 N@3 N@5 P@1 P@3 N@3 N@5 P@1 P@3 N@3 N@5

2

XML-CNN 0.7002 0.4516 0.6366 0.6390 0.9190 0.8942 0.9026 0.8902 0.8998 0.8136 0.8471 0.8147
AttentionXML 0.8665 0.5884 0.8381 0.8406 0.9288 0.9103 0.9175 0.9082 0.9205 0.8344 0.8676 0.8334

MATCH 0.8434 0.5363 0.7795 0.7721 0.9190 0.8967 0.9047 0.8937 - - - -
XR-Transformer 0.8027 0.5437 0.7677 0.7717 0.9180 0.9041 0.9104 0.9029 0.9276 0.8587 0.8890 0.8568

REASSIGN 0.6680 0.4224 0.5942 0.5901 0.9196 0.8554 0.8713 0.8417 0.8655 0.773 0.8061 0.7691
HECTOR 0.8917 0.5931 0.8530 0.8527 0.9753 0.9436 0.9554 0.9392 0.9861 0.9419 0.9691 0.9563

3

XML-CNN 0.6747 0.4121 0.6681 0.6913 0.8993 0.8638 0.8775 0.8681 0.8028 0.5038 0.7942 0.8146
AttentionXML 0.8346 0.4973 0.8290 0.8448 0.9177 0.887 0.9006 0.8925 0.8220 0.5158 0.8111 0.8345

MATCH 0.7818 0.4496 0.7583 0.7725 0.9025 0.8691 0.8827 0.8737 - - - -
XR-Transformer 0.7906 0.4770 0.7879 0.8015 0.9093 0.8827 0.8960 0.8892 0.8441 0.5211 0.8239 0.8343

REASSIGN 0.6019 0.3636 0.5836 0.6025 0.8916 0.8301 0.8484 0.8238 0.7598 0.4791 0.7522 0.7735
HECTOR 0.8818 0.5141 0.8745 0.8885 0.9754 0.9363 0.9589 0.9468 0.9579 0.6034 0.9506 0.9595

4

XML-CNN 0.6662 0.3777 0.7358 0.7724 0.8743 0.8547 0.8650 0.8571 0.8115 0.3690 0.8655 0.8794
AttentionXML 0.8113 0.4257 0.8581 0.8788 0.9021 0.8816 0.8944 0.8884 0.8251 0.3775 0.8836 0.8957

MATCH 0.7330 0.3843 0.7789 0.8071 0.8820 0.8627 0.8747 0.8678 - - - -
XR-Transformer 0.7775 0.4083 0.8197 0.8364 0.8980 0.8765 0.8907 0.8846 0.8163 0.3448 0.8289 0.8360

REASSIGN 0.5416 0.3174 0.6015 0.6478 0.8716 0.8469 0.8584 0.8476 0.7636 0.3613 0.8359 0.8518
HECTOR 0.8494 0.4390 0.8961 0.9140 0.9711 0.9294 0.9601 0.9523 0.9177 0.3991 0.9542 0.9583

5

XML-CNN 0.7815 0.3376 0.8581 0.8736 0.8926 0.8742 0.8871 0.8742 0.9640 0.3393 0.9739 0.9774
AttentionXML 0.8612 0.3492 0.9101 0.9209 0.9203 0.8975 0.9150 0.9072 0.9640 0.3483 0.9841 0.9841

MATCH 0.7802 0.3256 0.8368 0.8585 0.9026 0.8788 0.8962 0.8877 - - - -
XR-Transformer 0.8213 0.3243 0.8551 0.8664 0.9139 0.8891 0.9077 0.8997 0.9189 0.3273 0.9346 0.9480

REASSIGN 0.7121 0.3205 0.8022 0.8283 0.8912 0.8723 0.8857 0.8759 0.9279 0.3393 0.9611 0.9659
HECTOR 0.8946 0.3526 0.9292 0.9370 0.9788 0.9359 0.9711 0.9610 0.9989 0.3483 0.9978 0.9978

Table 3: Performance Comparison of ablation versions of

HECTOR (300_300 and UniSmooth) on Label Refinement

task with 𝐿 = 1.

Dataset Algorithms P@1 N@3 N@5

MAG-CS
300_300 0.8881 0.8247 0.8170

UniSmooth 0.8813 0.8263 0.8219
HECTOR 0.8918 0.8341 0.8286

PubMed
300_300 0.9244 0.9068 0.8890

UniSmooth 0.9193 0.9001 0.8912
HECTOR 0.9340 0.9173 0.9002

EURLex
300_300 0.9207 0.8954 0.8710

UniSmooth 0.9173 0.8951 0.8779
HECTOR 0.9233 0.9048 0.8809

in most of the experiments and outperforming it on some. Con-
versely, XML-CNN tends to perform significantly worse than the
other approaches in our experiments. Since XML-CNN is one of the
first deep-learning methods for XMLC, it neither features attention
mechanism nor Transformer architectures, contrary to the other
methods considered in our experiments. This further highlights the
advantage of the Transformer approach for XMLCo. While MATCH
yields the best results for the XML Classification task on MAG-CS

dataset [36], its performance turns out to rather low on label re-
finement tasks. Finally, REASSIGN’s performance is subpar in our
experiments. This may be explained by the fact that while com-
patible with XMLCo, REASSIGN is designed for a leaf-mandatory
problem, and tends to focus on full paths prediction, resulting in
increased weights for labels that are at the deepest level. How-
ever, in the different dataset considered in this experiment, many
texts are only equipped with labels of average depth, and do not
include any terminal label, which might considerably deteriorate
the performance of the method.

We also report classification metrics in Figure 4. Overall, these
metrics strengthen our previous observations. HECTOR demon-
strates the best, or close to the best, results for both metrics, high-
lighting its advantage in predicting low-resource classes. For in-
stance, on EURLex with 𝐿 = 2, HECTOR outperforms the next best
competing method by 10.9% and 19.4% in terms of𝑚𝑖𝑐𝑟𝑜_𝑓 1 and
𝑚𝑎𝑐𝑟𝑜_𝑓 1, while onMAG-CS it lags behind by 1.1% and 3.5%, respec-
tively. This difference can be attributed to the distinct properties of
the label sub-trees associated with each document, which vary sig-
nificantly across datasets. Specifically, in MAG-CS, label sub-trees
are wider, resulting in documents being tagged with multiple sib-
ling labels. Conversely, in PubMed and EURLex, label sub-trees tend
to be narrower, which allows to fully leverage HECTOR’s sequen-
tial path decoding algorithm. Finally, while most baselines show

2100

WWW ’24, May 13–17, 2024, Singapore, Singapore Natalia Ostapuk, Julien Audiffren, Ljiljana Dolamic, Alain Mermoud, and Philippe Cudré-Mauroux

(a) MAG-CS - Micro F1 (b) PubMed - Micro F1 (c) EURLex - Micro F1

(d) MAG-CS - Macro F1 (e) PubMed - Macro F1 (f) EURLex - Macro F1

Figure 4: Performance comparison of HECTOR and other competing methods on Label Refinement task by Micro F1 and Macro

F1 scores. The x-axis represents the taxonomy level 𝐿 from which we start the refinement process.

consistent performance across classification and ranking metrics,
XR-Transformer excels particularly in𝑚𝑖𝑐𝑟𝑜_𝑓 1 and𝑚𝑎𝑐𝑟𝑜_𝑓 1, of-
ten outperforming other baselines. This underscores its consistent
performance across all labels, even those with low resources. In
summary, these results highlight the effectiveness of HECTOR on
the label refinement task. We report further metrics in the supple-
mentary material that further illustrate this observation.

4.3 Ablation Study

Finally, we perform ablation studies to justify specific design choices
discussed in Section 3.3. In particular, we aim at evaluating the im-
pact of the 600d label embeddings and the smoothing loss function.
The results of this experiment are reported in Table 3.
600d label embeddings. HECTOR uses 300d GloVe embeddings
as initial word representation, and 600d embeddings for label rep-
resentation to enhance separability in the vector space. To evaluate
the impact of 600d label embeddings, we trained an ablation version
of the full HECTOR model where both word and label embeddings
are 300-dimensional – HECTOR 300_300. The adapter between the
encoder and the decoder is eliminated in this architecture, since
there is no need for dimension expansion. The results of this exper-
iment are reported in Table 3. HECTOR 300_300 perform slightly
worse than HECTOR on all three datasets, justifying the choice of
a 600-dimensional embedding and of the adapter.
Smoothing by level. HECTOR leverages prior knowledge of la-
bel taxonomy to refine the smoothing process of the loss function:
at each position in the output sequence, the smoothing value is
uniformly distributed among the labels of the corresponding level
rather than all available labels. To evaluate our smoothing-by-level
algorithm, we trained HECTOR UniSmooth – a variation of HEC-
TORwith a smoothing value uniformly distributed among all labels.

This way, the model does not know in advance which labels are
valid at a specific position and learns the taxonomy structure from
data alone. Experimental results reported in Table 3 indicate that
incorporating prior knowledge about the taxonomy into the model
improves model performance. The improvement is especially evi-
dent at 𝑃@1, which corresponds to the prediction of the first label
in a path. This can be explained by the fact that at the start of the
path there is no left context and the task of predicting the first
label is particularly challenging for the decoder, hence it profits
from a reduced search space. We also note that although HECTOR
UniSmooth performs worse than the full HECTOR model, it still
demonstrates strong performance, which shows that our method is
capable of learning the label structure without any prior knowledge.

5 CONCLUSION AND FUTUREWORK

We introduced a novel paradigm in the context of XMLCo, where
labels are predicted as paths on a hierarchical label tree. Our pro-
posed approach, HECTOR, leverages the Transformer architecture
in this new paradigm to model fine-grained dependencies between
text tokens and labels and encodes meta-information contained
in hierarchical label trees, resulting in substantially better perfor-
mance on label refinement tasks in our experiments.Interestingly,
while HECTOR relies on the tree structure of the taxonomy, it can
be adapted with minimal modification to work with any data struc-
ture that satisfies partial order properties. Future works include the
study of the extension of HECTOR to acyclic directed graphs, as
well as the use of ensemble learning to further improve our results.

ACKNOWLEDGMENT

This work was supported by armasuisse Science and Technology,
Switzerland under contract No. 8203005340.

2101

Follow the Path: Hierarchy-Aware Extreme Multi-Label Completion for Semantic Text Tagging WWW ’24, May 13–17, 2024, Singapore, Singapore

REFERENCES

[1] Rohit Babbar and Bernhard Schölkopf. 2017. DiSMEC: Distributed Sparse Ma-
chines for Extreme Multi-label Classification. In Proceedings of the Tenth ACM
International Conference on Web Search and Data Mining, WSDM 2017, Cambridge,
United Kingdom, February 6-10, 2017. 721–729.

[2] Kush Bhatia, Himanshu Jain, Purushottam Kar, Manik Varma, and Prateek Jain.
2015. Sparse Local Embeddings for Extreme Multi-label Classification. In Ad-
vances in Neural Information Processing Systems 28: Annual Conference on Neu-
ral Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec,
Canada. 730–738.

[3] Danielle Caled, Mário J. Silva, Bruno Martins, and Miguel Won. 2022. Multi-label
classification of legislative contents with hierarchical label attention networks.
Int. J. Digit. Libr. 23, 1 (2022), 77–90. https://doi.org/10.1007/s00799-021-00307-w

[4] Ilias Chalkidis, Manos Fergadiotis, Prodromos Malakasiotis, and Ion Androut-
sopoulos. 2019. Large-Scale Multi-Label Text Classification on EU Legislation. In
Proceedings of the 57th Conference of the Association for Computational Linguistics,
ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, Anna Ko-
rhonen, David R. Traum, and Lluís Màrquez (Eds.). Association for Computational
Linguistics, 6314–6322. https://doi.org/10.18653/v1/p19-1636

[5] Wei-Cheng Chang, Hsiang-Fu Yu, Kai Zhong, Yiming Yang, and Inderjit S. Dhillon.
2020. Taming Pretrained Transformers for ExtremeMulti-label Text Classification.
In KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, Virtual Event, CA, USA, August 23-27, 2020. ACM, 3163–3171.

[6] Yusheng Cheng, Kun Qian, and Fan Min. 2022. Global and local attention-based
multi-label learning with missing labels. Information Sciences 594 (2022), 20–42.

[7] Yuxiao Dong, Hao Ma, Zhihong Shen, and Kuansan Wang. 2017. A century
of science: Globalization of scientific collaborations, citations, and innovations.
In Proceedings of the 23rd ACM SIGKDD international conference on knowledge
discovery and data mining. 1437–1446.

[8] Francesco Gargiulo, Stefano Silvestri, and Mario Ciampi. 2019. Exploit hierarchi-
cal label knowledge for deep learning. In 2019 IEEE 32nd International Symposium
on Computer-Based Medical Systems (CBMS). IEEE, 539–542.

[9] Francesco Gargiulo, Stefano Silvestri, Mario Ciampi, and Giuseppe De Pietro.
2019. Deep neural network for hierarchical extreme multi-label text classification.
Appl. Soft Comput. 79 (2019), 125–138. https://doi.org/10.1016/j.asoc.2019.03.041

[10] Vivek Gupta, Rahul Wadbude, Nagarajan Natarajan, Harish Karnick, Prateek
Jain, and Piyush Rai. 2019. Distributional Semantics Meets Multi-Label Learning.
In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The
Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019,
The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019. AAAI Press,
3747–3754.

[11] Himanshu Jain, Venkatesh Balasubramanian, Bhanu Chunduri, and Manik Varma.
2019. Slice: Scalable Linear Extreme Classifiers Trained on 100 Million Labels for
Related Searches. In Proceedings of the Twelfth ACM International Conference on
Web Search and Data Mining, WSDM 2019, Melbourne, VIC, Australia, February
11-15, 2019. ACM, 528–536.

[12] Himanshu Jain, Yashoteja Prabhu, and Manik Varma. 2016. Extreme Multi-label
Loss Functions for Recommendation, Tagging, Ranking & Other Missing Label
Applications. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17,
2016. ACM, 935–944.

[13] Yova Kementchedjhieva and Ilias Chalkidis. 2023. An Exploration of Encoder-
Decoder Approaches to Multi-Label Classification for Legal and Biomedical Text.
arXiv preprint arXiv:2305.05627 (2023).

[14] Sujay Khandagale, Han Xiao, and Rohit Babbar. 2020. Bonsai: diverse and shallow
trees for extreme multi-label classification. Mach. Learn. 109, 11 (2020), 2099–
2119.

[15] Jingzhou Liu, Wei-Cheng Chang, Yuexin Wu, and Yiming Yang. 2017. Deep
Learning for Extreme Multi-label Text Classification. In Proceedings of the 40th
International ACM SIGIR Conference on Research and Development in Information
Retrieval, Shinjuku, Tokyo, Japan, August 7-11, 2017. ACM, 115–124.

[16] Weiwei Liu, Xiaobo Shen, Haobo Wang, and Ivor W. Tsang. 2020. The Emerging
Trends of Multi-Label Learning. CoRR abs/2011.11197 (2020).

[17] Weiwei Liu, Haobo Wang, Xiaobo Shen, and Ivor W Tsang. 2021. The emerging
trends of multi-label learning. IEEE transactions on pattern analysis and machine
intelligence 44, 11 (2021), 7955–7974.

[18] Eneldo Loza Mencía and Johannes Fürnkranz. 2007. An Evaluation of Efficient
Multilabel Classification Algorithms for Large-Scale Problems in the Legal Do-
main. In LWA 2007: Lernen -Wissen - Adaption, Halle, Deutschland, September 2007,
Workshop Proceedings. Martin-Luther-University Halle-Wittenberg, 126–132.

[19] Alexandru Niculescu-Mizil and Ehsan Abbasnejad. 2017. Label Filters for Large
Scale Multilabel Classification. In Proceedings of the 20th International Confer-
ence on Artificial Intelligence and Statistics, AISTATS 2017, 20-22 April 2017, Fort

Lauderdale, FL, USA. 1448–1457.
[20] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe:

Global Vectors for Word Representation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP). 1532–1543. http://www.aclweb.org/anthology/D14-
1162

[21] Yashoteja Prabhu, Anil Kag, Shilpa Gopinath, Kunal Dahiya, Shrutendra Harsola,
Rahul Agrawal, and Manik Varma. 2018. ExtremeMulti-label Learning with Label
Features for Warm-start Tagging, Ranking & Recommendation. In Proceedings
of the Eleventh ACM International Conference on Web Search and Data Mining,
WSDM 2018, Marina Del Rey, CA, USA, February 5-9, 2018. ACM, 441–449.

[22] Yashoteja Prabhu, Anil Kag, Shrutendra Harsola, Rahul Agrawal, and Manik
Varma. 2018. Parabel: Partitioned Label Trees for Extreme Classification with
Application to Dynamic Search Advertising. In Proceedings of the 2018 World
Wide Web Conference on World Wide Web, WWW 2018, Lyon, France, April 23-27,
2018. 993–1002.

[23] Yashoteja Prabhu and Manik Varma. 2014. FastXML: a fast, accurate and stable
tree-classifier for extreme multi-label learning. In The 20th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, KDD ’14, New York,
NY, USA - August 24 - 27, 2014. ACM, 263–272.

[24] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer. J. Mach.
Learn. Res. 21 (2020), 140:1–140:67. http://jmlr.org/papers/v21/20-074.html

[25] Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank. 2011. Classifier
chains for multi-label classification. Mach. Learn. 85, 3 (2011), 333–359. https:
//doi.org/10.1007/s10994-011-5256-5

[26] Miguel Romero, Felipe Kenji Nakano, Jorge Finke, Camilo Rocha, and Celine
Vens. 2023. Leveraging class hierarchy for detecting missing annotations on
hierarchical multi-label classification. Comput. Biol. Medicine 152 (2023), 106423.
https://doi.org/10.1016/j.compbiomed.2022.106423

[27] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbig-
niew Wojna. 2016. Rethinking the Inception Architecture for Computer Vi-
sion. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE Computer Society, 2818–2826.
https://doi.org/10.1109/CVPR.2016.308

[28] Yukihiro Tagami. 2017. AnnexML: Approximate Nearest Neighbor Search for
Extreme Multi-label Classification. In Proceedings of the 23rd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, Halifax, NS,
Canada, August 13 - 17, 2017. ACM, 455–464.

[29] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume
Lample. [n. d.]. LLaMA: Open and Efficient Foundation Language Models.
arXiv:2302.13971 [cs] http://arxiv.org/abs/2302.13971

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems 30: Annual Con-
ference on Neural Information Processing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA. 5998–6008.

[31] Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong,
and Anshul Kanakia. 2020. Microsoft Academic Graph: When experts are not
enough. Quant. Sci. Stud. 1, 1 (2020), 396–413.

[32] Fuzhao Xue, Yao Fu, Wangchunshu Zhou, Zangwei Zheng, and Yang You. [n. d.].
To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis.
https://doi.org/10.48550/arXiv.2305.13230 arXiv:2305.13230 [cs]

[33] Ronghui You, Zihan Zhang, Ziye Wang, Suyang Dai, Hiroshi Mamitsuka, and
Shanfeng Zhu. 2019. AttentionXML: Label Tree-based Attention-Aware Deep
Model for High-Performance Extreme Multi-Label Text Classification. In Ad-
vances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada. 5812–5822.

[34] Jiong Zhang, Wei-Cheng Chang, Hsiang-Fu Yu, and Inderjit S. Dhillon. 2021. Fast
Multi-Resolution Transformer Fine-tuning for Extreme Multi-label Text Classifi-
cation. InAdvances in Neural Information Processing Systems 34: Annual Conference
on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021,
virtual, Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang,
and Jennifer Wortman Vaughan (Eds.). 7267–7280. https://proceedings.neurips.
cc/paper/2021/hash/3bbca1d243b01b47c2bf42b29a8b265c-Abstract.html

[35] Jiong Zhang, Wei-Cheng Chang, Hsiang-Fu Yu, and Inderjit Dhillon. 2021. Fast
multi-resolution transformer fine-tuning for extreme multi-label text classifica-
tion. Advances in Neural Information Processing Systems 34 (2021), 7267–7280.

[36] Yu Zhang, Zhihong Shen, Yuxiao Dong, Kuansan Wang, and Jiawei Han. 2021.
MATCH: Metadata-Aware Text Classification in A Large Hierarchy. InWWW
’21: The Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April 19-23, 2021.
ACM / IW3C2, 3246–3257.

2102

https://doi.org/10.1007/s00799-021-00307-w
https://doi.org/10.18653/v1/p19-1636
https://doi.org/10.1016/j.asoc.2019.03.041
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1007/s10994-011-5256-5
https://doi.org/10.1007/s10994-011-5256-5
https://doi.org/10.1016/j.compbiomed.2022.106423
https://doi.org/10.1109/CVPR.2016.308
https://arxiv.org/abs/2302.13971 [cs]
http://arxiv.org/abs/2302.13971
https://doi.org/10.48550/arXiv.2305.13230
https://arxiv.org/abs/2305.13230 [cs]
https://proceedings.neurips.cc/paper/2021/hash/3bbca1d243b01b47c2bf42b29a8b265c-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/3bbca1d243b01b47c2bf42b29a8b265c-Abstract.html

WWW ’24, May 13–17, 2024, Singapore, Singapore Natalia Ostapuk, Julien Audiffren, Ljiljana Dolamic, Alain Mermoud, and Philippe Cudré-Mauroux

A ADDITIONAL EXPERIMENTAL RESULTS

A.1 Label Refinement

In this section we report the full results on our label refinement
experiments (Table 4, Table 5 and Table 6 for MAG-CS, PubMed
and EURLex datasets, respectively). These tables contain additional
metrics, namely micro and macro Precision and Recall, as well as
several additional values of ranking metrics. Overall the new met-
rics confirm the observations and conclusions made in Section 3.4.
We refer the reader to Section 4 of the main paper for the complete
discussion around our experimental design and results.

A.2 Extreme Multi-Label Classification

We additionally evaluate HECTOR on a traditional XMLC task, i.e.,
with no labels provided. We report results of this evaluation in

Table 7. Interestingly, while HECTOR demonstrates competitive
performance in this task, they are mildly worse in this particular
setting. We believe that this phenomenon is a consequence of error
propagation. Indeed, if models that predict sequences on a tree
(such as HECTOR) make an error in the prediction of the early label
of the path, all the subsequently predicted labels will be wrong,
as the model does deviate from the given hierarchy. Other models
that predict labels independently do not suffer from this problem,
resulting in predictions that are sometimes more correct, but also
less consistent w.r.t. the taxonomy (which is central to our approach
but also to this track). Importantly, on the label refinement task,
the task for which HECTOR was developed, HECTOR is able to
fully leverage the hierarchy and to achieve significantly better
performance than the alternatives.

Table 4: Performance comparison of HECTOR and other competing methods on Label Refinement task on MAG-CS dataset. 𝐿

denotes the level of taxonomy, from which the refinement starts. 𝑃@𝑘 – Precision@k; 𝑁@𝑘 – nDCG@k; 𝜇𝑋 – micro average;

𝑀𝑋 – macro average.

L Algorithms 𝑃@1 𝑃@3 𝑃@5 𝑁@3 𝑁@5 𝜇𝑃𝑟𝑒𝑐 𝜇𝑅𝑒𝑐𝑎𝑙𝑙 𝜇𝐹1 𝑀𝑃𝑟𝑒𝑐 𝑀𝑅𝑒𝑐𝑎𝑙𝑙 𝑀𝐹1

2

XML-CNN 0.7002 0.4516 0.3283 0.6366 0.6390 0.6658 0.4712 0.5518 0.2639 0.1570 0.1969
AttentionXML 0.8665 0.5884 0.4245 0.8381 0.8406 0.7965 0.7125 0.7522 0.4073 0.4732 0.4378

MATCH 0.8434 0.5363 0.3763 0.7795 0.7721 0.7826 0.5895 0.6724 0.3989 0.3107 0.3494
XR-Transformer 0.8027 0.5437 0.3958 0.7677 0.7717 0.7325 0.6350 0.6803 0.3926 0.4417 0.4157

REASSIGN 0.6680 0.4224 0.3017 0.5942 0.5901 0.7054 0.4300 0.5343 0.0709 0.0851 0.0773
HECTOR 0.8917 0.5931 0.4239 0.8530 0.8527 0.7745 0.7113 0.7416 0.3397 0.4936 0.4025

3

XML-CNN 0.6747 0.4121 0.2931 0.6681 0.6913 0.6115 0.5106 0.5565 0.3213 0.1781 0.2291
AttentionXML 0.8346 0.4973 0.3440 0.8290 0.8448 0.8042 0.6674 0.7294 0.4362 0.4693 0.4521

MATCH 0.7818 0.4496 0.3097 0.7583 0.7725 0.7381 0.5909 0.6563 0.3979 0.3658 0.3812
XR-Transformer 0.7906 0.4770 0.3297 0.7879 0.8015 0.7432 0.6417 0.6887 0.4540 0.4927 0.4726

REASSIGN 0.6019 0.3636 0.2574 0.5836 0.6025 0.6879 0.4027 0.5080 0.0846 0.1241 0.1006
HECTOR 0.8818 0.5141 0.3521 0.8745 0.8885 0.7513 0.7181 0.7343 0.4106 0.6507 0.5035

4

XML-CNN 0.6662 0.3777 0.2555 0.7358 0.7724 0.5899 0.4959 0.5388 0.4167 0.2129 0.2818
AttentionXML 0.8113 0.4257 0.2748 0.8581 0.8788 0.7311 0.6297 0.6766 0.4691 0.5711 0.5151

MATCH 0.7330 0.3843 0.2547 0.7789 0.8071 0.6675 0.5491 0.6025 0.3876 0.4731 0.4261
XR-Transformer 0.7775 0.4083 0.2607 0.8197 0.8364 0.7053 0.6620 0.6830 0.5378 0.5499 0.5438

REASSIGN 0.5416 0.3174 0.2250 0.6015 0.6478 0.4013 0.4879 0.4404 0.1341 0.2735 0.1799
HECTOR 0.8494 0.4390 0.2814 0.8961 0.9140 0.7084 0.7567 0.7317 0.5217 0.7197 0.6049

5

XML-CNN 0.7815 0.3376 0.2126 0.8581 0.8736 0.8454 0.4014 0.5443 0.3845 0.1346 0.1994
AttentionXML 0.8612 0.3492 0.2162 0.9101 0.9209 0.7526 0.7534 0.7530 0.5181 0.5013 0.5096

MATCH 0.7802 0.3256 0.2080 0.8368 0.8585 0.8370 0.5298 0.6489 0.5886 0.4099 0.4832
XR-Transformer 0.8213 0.3243 0.2015 0.8551 0.8664 0.7735 0.7087 0.7397 0.5512 0.5733 0.5621

REASSIGN 0.7121 0.3205 0.2067 0.8022 0.8283 0.5365 0.6067 0.5694 0.2213 0.2466 0.2333
HECTOR 0.8946 0.3526 0.2170 0.9292 0.9370 0.7675 0.8028 0.7848 0.5704 0.7597 0.6516

2103

Follow the Path: Hierarchy-Aware Extreme Multi-Label Completion for Semantic Text Tagging WWW ’24, May 13–17, 2024, Singapore, Singapore

Table 5: Performance comparison of HECTOR and other competing methods on Label Refinement task on PubMed dataset. 𝐿

denotes the level of taxonomy, from which the refinement starts. 𝑃@𝑘 – Precision@k; 𝑁@𝑘 – nDCG@k; 𝜇𝑋 – micro average;

𝑀𝑋 – macro average.

L Algorithms 𝑃@1 𝑃@3 𝑃@5 𝑁@3 𝑁@5 𝜇𝑃𝑟𝑒𝑐 𝜇𝑅𝑒𝑐𝑎𝑙𝑙 𝜇𝐹1 𝑀𝑃𝑟𝑒𝑐 𝑀𝑅𝑒𝑐𝑎𝑙𝑙 𝑀𝐹1

2

XML-CNN 0.9190 0.8942 0.8723 0.9026 0.8902 0.8303 0.6271 0.7145 0.1007 0.1350 0.1153
AttentionXML 0.9288 0.9103 0.8914 0.9175 0.9082 0.8003 0.7170 0.7563 0.2583 0.2974 0.2765

MATCH 0.9190 0.8967 0.8759 0.9047 0.8937 0.8114 0.6571 0.7261 0.2162 0.2434 0.2290
XR-Transformer 0.9180 0.9041 0.8867 0.9104 0.9029 0.8176 0.7016 0.7552 0.3720 0.3667 0.3693

REASSIGN 0.9196 0.8554 0.8132 0.8713 0.8417 0.8672 0.4151 0.5615 0.0525 0.1675 0.0800
HECTOR 0.9753 0.9436 0.9101 0.9554 0.9392 0.7967 0.8011 0.7989 0.3758 0.4051 0.3899

3

XML-CNN 0.8993 0.8638 0.8443 0.8775 0.8681 0.8488 0.6360 0.7271 0.0984 0.1282 0.1114
AttentionXML 0.9177 0.8870 0.8674 0.9006 0.8925 0.8171 0.7262 0.7690 0.2575 0.2920 0.2737

MATCH 0.9025 0.8691 0.8487 0.8827 0.8737 0.8342 0.6653 0.7402 0.2147 0.2390 0.2262
XR-Transformer 0.9093 0.8827 0.8636 0.8960 0.8892 0.8346 0.7110 0.7678 0.3708 0.3637 0.3673

REASSIGN 0.8916 0.8301 0.7931 0.8484 0.8238 0.8927 0.4757 0.6207 0.0614 0.1391 0.0852
HECTOR 0.9754 0.9363 0.9019 0.9589 0.9468 0.8295 0.8445 0.8369 0.4173 0.4842 0.4483

4

XML-CNN 0.8743 0.8547 0.8334 0.8650 0.8571 0.8734 0.6844 0.7674 0.0957 0.1176 0.1055
AttentionXML 0.9021 0.8816 0.8597 0.8944 0.8884 0.8491 0.7678 0.8064 0.2569 0.2974 0.2757

MATCH 0.8820 0.8627 0.8401 0.8747 0.8678 0.8666 0.7107 0.7809 0.2209 0.2375 0.2289
XR-Transformer 0.8980 0.8765 0.8538 0.8907 0.8846 0.8384 0.7723 0.8040 0.3762 0.3661 0.3711

REASSIGN 0.8716 0.8469 0.8225 0.8584 0.8476 0.7802 0.6978 0.7367 0.0684 0.1249 0.0884
HECTOR 0.9711 0.9294 0.8937 0.9601 0.9523 0.8561 0.8808 0.8683 0.4587 0.5248 0.4895

5

XML-CNN 0.8926 0.8742 0.8447 0.8871 0.8742 0.8961 0.7467 0.8146 0.0822 0.1268 0.0998
AttentionXML 0.9203 0.8975 0.8709 0.9150 0.9072 0.8836 0.8183 0.8497 0.2526 0.3114 0.2789

MATCH 0.9026 0.8788 0.8520 0.8962 0.8877 0.8959 0.7672 0.8266 0.2261 0.2382 0.2320
XR-Transformer 0.9139 0.8891 0.8622 0.9077 0.8997 0.8732 0.8197 0.8456 0.3854 0.3712 0.3781

REASSIGN 0.8912 0.8723 0.8467 0.8857 0.8759 0.8930 0.7656 0.8244 0.0675 0.1199 0.0863
HECTOR 0.9788 0.9359 0.8956 0.9711 0.9610 0.8870 0.9047 0.8958 0.4564 0.5514 0.4994

6

XML-CNN 0.9094 0.8801 0.8564 0.8980 0.8879 0.9035 0.7866 0.8410 0.0874 0.0969 0.0919
AttentionXML 0.9368 0.9049 0.8815 0.9276 0.9213 0.9012 0.8475 0.8735 0.2632 0.2985 0.2797

MATCH 0.9170 0.8855 0.8614 0.9073 0.9002 0.8983 0.8082 0.8509 0.2240 0.2346 0.2291
XR-Transformer 0.9268 0.8941 0.8700 0.9172 0.9102 0.8867 0.8472 0.8665 0.3933 0.3784 0.3857

REASSIGN 0.9087 0.8818 0.8606 0.8994 0.8924 0.9046 0.8055 0.8522 0.0673 0.1102 0.0836
HECTOR 0.9832 0.9341 0.8999 0.9730 0.9648 0.9053 0.9178 0.9115 0.4546 0.5561 0.5003

7

XML-CNN 0.9429 0.8984 0.8790 0.9123 0.9050 0.9076 0.8108 0.8565 0.0712 0.1204 0.0895
AttentionXML 0.9583 0.9241 0.9031 0.9396 0.9351 0.9140 0.8625 0.8875 0.2630 0.2939 0.2776

MATCH 0.9392 0.9043 0.8828 0.9197 0.9147 0.9071 0.8256 0.8644 0.1911 0.2883 0.2298
XR-Transformer 0.9447 0.9108 0.8888 0.9262 0.9207 0.8951 0.8620 0.8782 0.3976 0.3694 0.3830

REASSIGN 0.9403 0.9043 0.8869 0.9167 0.9122 0.9118 0.8299 0.8689 0.0648 0.1211 0.0844
HECTOR 0.9873 0.9430 0.9143 0.9682 0.9617 0.9007 0.9263 0.9133 0.4356 0.5459 0.4846

8

XML-CNN 0.9066 0.8973 0.8706 0.9058 0.9020 0.9007 0.8164 0.8565 0.0726 0.1079 0.0868
AttentionXML 0.9383 0.9230 0.8934 0.9375 0.9353 0.9143 0.8642 0.8885 0.2388 0.2639 0.2507

MATCH 0.9171 0.9016 0.8701 0.9160 0.9122 0.9036 0.8280 0.8641 0.1872 0.2782 0.2238
XR-Transformer 0.9234 0.9070 0.8766 0.9219 0.9184 0.8901 0.8636 0.8767 0.3854 0.3458 0.3645

REASSIGN 0.9167 0.9054 0.8781 0.9153 0.9132 0.9079 0.8379 0.8715 0.0605 0.1521 0.0866
HECTOR 0.9593 0.9348 0.9005 0.9557 0.9524 0.8839 0.9273 0.9051 0.4053 0.4797 0.4394

9

XML-CNN 0.9136 0.8975 0.7334 0.9111 0.9137 0.9038 0.8260 0.8631 0.0654 0.1019 0.0797
AttentionXML 0.9436 0.9211 0.7501 0.9421 0.9437 0.9197 0.8692 0.8937 0.1963 0.2993 0.2371

MATCH 0.9228 0.9001 0.7281 0.9209 0.9194 0.9088 0.8333 0.8694 0.1880 0.2573 0.2172
XR-Transformer 0.9276 0.9041 0.7319 0.9255 0.9236 0.8936 0.8689 0.8810 0.3375 0.3688 0.3524

REASSIGN 0.9229 0.9084 0.7384 0.9237 0.9245 0.9122 0.8470 0.8784 0.0551 0.1387 0.0789
HECTOR 0.9926 0.9621 0.7782 0.9902 0.9893 0.9565 0.9748 0.9655 0.3904 0.6192 0.4789

2104

WWW ’24, May 13–17, 2024, Singapore, Singapore Natalia Ostapuk, Julien Audiffren, Ljiljana Dolamic, Alain Mermoud, and Philippe Cudré-Mauroux

Table 6: Performance comparison of HECTOR and other competing methods on Label Refinement task on EURLex dataset. 𝐿

denotes the level of taxonomy, from which the refinement starts. 𝑃@𝑘 – Precision@k; 𝑁@𝑘 – nDCG@k; 𝜇𝑋 – micro average;

𝑀𝑋 – macro average.

L Algorithms 𝑃@1 𝑃@3 𝑃@5 𝑁@3 𝑁@5 𝜇𝑃𝑟𝑒𝑐 𝜇𝑅𝑒𝑐𝑎𝑙𝑙 𝜇𝐹1 𝑀𝑃𝑟𝑒𝑐 𝑀𝑅𝑒𝑐𝑎𝑙𝑙 𝑀𝐹1

2

XML-CNN 0.8998 0.8136 0.7082 0.8471 0.8147 0.7823 0.6560 0.7136 0.3937 0.4236 0.4081
AttentionXML 0.9205 0.8344 0.7249 0.8676 0.8334 0.7618 0.6782 0.7176 0.3965 0.5537 0.4621

MATCH - - - - - - - - - - -
XR-Transformer 0.9276 0.8587 0.7486 0.8890 0.8568 0.7924 0.7293 0.7595 0.4869 0.6077 0.5407

REASSIGN 0.8655 0.7730 0.6668 0.8061 0.7691 0.6758 0.6513 0.6633 0.2120 0.3704 0.2697
HECTOR 0.9861 0.9419 0.8494 0.9691 0.9563 0.8170 0.9258 0.8680 0.6863 0.7902 0.7346

3

XML-CNN 0.8028 0.5038 0.3509 0.7942 0.8146 0.7510 0.6598 0.7025 0.4064 0.4069 0.4066
AttentionXML 0.8220 0.5158 0.3618 0.8111 0.8345 0.7200 0.6792 0.6990 0.3874 0.5773 0.4636

MATCH - - - - - - - - - - -
XR-Transformer 0.8441 0.5211 0.3551 0.8239 0.8343 0.7600 0.7342 0.7469 0.5037 0.5866 0.5420

REASSIGN 0.7598 0.4791 0.3350 0.7522 0.7735 0.6944 0.6338 0.6627 0.2265 0.3703 0.2810
HECTOR 0.9579 0.6034 0.4081 0.9506 0.9595 0.8091 0.9239 0.8627 0.7414 0.7744 0.7575

4

XML-CNN 0.8115 0.3690 0.2310 0.8655 0.8794 0.8115 0.6731 0.7359 0.4410 0.3781 0.4071
AttentionXML 0.8251 0.3775 0.2350 0.8836 0.8957 0.8069 0.7099 0.7553 0.4173 0.6799 0.5171

MATCH - - - - - - - - - - -
XR-Transformer 0.8163 0.3448 0.2125 0.8289 0.8360 0.8393 0.7558 0.7954 0.6044 0.6483 0.6256

REASSIGN 0.7636 0.3613 0.2276 0.8359 0.8518 0.7152 0.6848 0.6997 0.3027 0.4469 0.3609
HECTOR 0.9177 0.3991 0.2435 0.9542 0.9583 0.7858 0.9244 0.8495 0.7669 0.8334 0.7988

5

XML-CNN 0.9640 0.3393 0.2054 0.9739 0.9774 0.9659 0.7328 0.8333 0.4480 0.3442 0.3893
AttentionXML 0.9640 0.3483 0.2090 0.9841 0.9841 0.9352 0.8707 0.9018 0.7726 0.8534 0.8110

MATCH - - - - - - - - - - -
XR-Transformer 0.9189 0.3273 0.2036 0.9346 0.9480 0.9604 0.8362 0.8940 0.9021 0.6449 0.7521

REASSIGN 0.9279 0.3393 0.2072 0.9611 0.9659 0.9333 0.7241 0.8155 0.5504 0.5932 0.5710
HECTOR 0.9989 0.3483 0.2090 0.9978 0.9978 0.9355 0.9974 0.9667 0.8636 0.9037 0.8832

Table 7: Performance comparison of HECTOR and other competing methods on the XMLC task. 𝑃@𝑘 – Precision@k; 𝑁@𝑘 –

nDCG@k; 𝜇𝑋 – micro average;𝑀𝑋 – macro average.

Dataset Algorithms 𝑃@1 𝑃@3 𝑃@5 𝑁@3 𝑁@5 𝜇𝑃𝑟𝑒𝑐 𝜇𝑅𝑒𝑐𝑎𝑙𝑙 𝜇𝐹1 𝑀𝑃𝑟𝑒𝑐 𝑀𝑅𝑒𝑐𝑎𝑙𝑙 𝑀𝐹1

MAG-CS

XML-CNN 0.8628 0.7049 0.5555 0.7819 0.7638 0.6666 0.6042 0.6338 0.2558 0.1655 0.2010
AttentionXML 0.8830 0.7732 0.6336 0.8397 0.8395 0.7404 0.7383 0.7394 0.3907 0.4723 0.4276

MATCH 0.9228 0.7797 0.6182 0.8574 0.8421 0.7604 0.6814 0.7187 0.3872 0.3168 0.3484
XR-Transformer 0.8607 0.7309 0.5886 0.8008 0.7905 0.7244 0.6489 0.6846 0.3692 0.4455 0.4038

REASSIGN 0.8706 0.7023 0.5512 0.7808 0.7604 0.6555 0.6079 0.6308 0.0730 0.0957 0.0828
HECTOR 0.8918 0.7616 0.6155 0.8341 0.8286 0.7073 0.7016 0.7045 0.3263 0.3663 0.3451

PubMed

XML-CNN 0.9408 0.9231 0.9007 0.9272 0.9145 0.8123 0.6507 0.7226 0.1012 0.1363 0.1162
AttentionXML 0.9434 0.9317 0.9132 0.9344 0.9249 0.7931 0.7304 0.7604 0.2587 0.2984 0.2771

MATCH 0.9418 0.9231 0.9024 0.9275 0.9161 0.8047 0.6709 0.7317 0.2168 0.2443 0.2297
XR-Transformer 0.9401 0.9246 0.9077 0.9281 0.9199 0.8110 0.7130 0.7589 0.3723 0.3674 0.3698

REASSIGN 0.9446 0.9055 0.8647 0.9154 0.8880 0.8660 0.4374 0.5812 0.0520 0.1701 0.0797
HECTOR 0.9340 0.9119 0.8822 0.9173 0.9002 0.6808 0.7141 0.6971 0.3548 0.2617 0.3012

EURLex

XML-CNN 0.9258 0.8922 0.8462 0.9019 0.8734 0.7838 0.6807 0.7287 0.4027 0.4408 0.4209
AttentionXML 0.9382 0.9083 0.8623 0.9172 0.8887 0.7710 0.6916 0.7291 0.4046 0.5536 0.4675

MATCH - - - - - - - - - - -
XR-Transformer 0.9417 0.9202 0.8812 0.9270 0.9042 0.7894 0.7466 0.7674 0.5065 0.5894 0.5449

REASSIGN 0.9162 0.8453 0.7759 0.8629 0.8152 0.6495 0.6247 0.6369 0.2112 0.3581 0.2657
HECTOR 0.9233 0.8972 0.8569 0.9048 0.8809 0.7614 0.7264 0.7435 0.4197 0.5802 0.4871

2105

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Method
	3.1 Intuition
	3.2 Path Prediction
	3.3 Model Architecture
	3.4 Label Completion with HECTOR

	4 Experimental Evaluation
	4.1 Experimental Setting
	4.2 Label Refinement
	4.3 Ablation Study

	5 Conclusion and Future Work
	References
	A Additional Experimental Results
	A.1 Label Refinement
	A.2 Extreme Multi-Label Classification

