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Abstract

We extract firms’ cyber risk with a machine learning algorithm measuring the proxim-
ity between their disclosures and a dedicated cyber corpus. Our approach outperforms
dictionary methods, uses full disclosure and not devoted-only sections, and generates
a cyber risk measure uncorrelated with other firms’ characteristics. We find that a
portfolio of US-listed stocks in the high cyber risk quantile generates an excess return
of 18.72% p.a. Moreover, a long-short cyber risk portfolio has a significant and positive
risk premium of 6.93% p.a., robust to all factors’ benchmarks. Finally, using a Bayesian
asset pricing method, we show that our cyber risk factor is the essential feature that
allows any multi-factor model to price the cross-section of stock returns.
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1. Introduction

Due to the increasing digitalization of our environment, usage of Internet-of-Things de-

vices, and geopolitical interests, the number of cyberattacks and costs constantly increase.

As Chuck Robbins, Chair and CEO at Cisco, put it,

If it were measured as a country, then cybercrime — which was predicted to

inflict damages totaling $6 trillion USD globally in 2021 — would be the world’s

third-largest economy after the U.S. and China.

As cyberattacks become more widespread and costly, cyber insurance contracts become vital

for public companies and governments, who must assess the global cyber risk of the economy.

These insurance contracts, however, need a thorough understanding of the systematic risks

in the economy and the firm-level cyber risk. In a recent interview1, Mario Greco, CEO

of Zurich Insurance Group, said that cyberattacks are set to become “uninsurable” and

called on governments to “set up private-public schemes to handle systemic cyber risks that

can’t be quantified, similar to those that exist in some jurisdictions for earthquakes or terror

attacks”.

Florackis, Louca, Michaely, and Weber (2023) and Jamilov, Rey, and Tahoun (2021) use

dictionary methods for cyber risk extractions in 10-K filings and earning calls, respectively.2

We argue that this approach is unsuitable for this purpose.

In this paper, we develop a method to quantify the cyber risk of a company based on its

disclosures and investigate whether this risk is costly to firms in the form of a market risk

premium that shows up in their stock returns. To do this, we collect financial fillings, monthly

returns, and other firm characteristics for over 7,000 firms listed on US stock markets between

January 2007 and December 2022. We use a machine learning algorithm, the “Paragraph

Vector”, in combination with the MITRE ATT&CK cybersecurity knowledgebase to score

each firm’s filing based on its cybersecurity content.

We find evidence that our cyber risk does not correlate with firm size, book-to-market,

beta, and other standard firms’ characteristics known to help price stock returns. At the

aggregated level, our measure shows a monotonic increasing trend, with a score moving from

0.51 to 0.54 out of one, whereas the cross-sectional distribution of that score is exceptionally

narrow (standard deviation of 0.03). We compare our cyber risk measure across Fama-

French 12 industries and find results supporting our intuition, with “Business Equipment”

and “Telephone and Television Transmission” being the riskiest and “Oil and Gas” and

“Utilities”, the safest.

1Available at https://www.ft.com/content/63ea94fa-c6fc-449f-b2b8-ea29cc83637d
2See also, Jiang, Khanna, Yang, and Zhou, 2023; Liu, Marsh, and Xiao, 2022
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We find that the cyber risk sorted long-short portfolio, which invests in high cyber risk

stocks and shorts low cyber risk stocks, has an average annual excess return of 6.93% and is

statistically significant at the 10 or 5% level even when controlling for common risk factors.

This portfolio performs particularly well before the first mention of a cyber risk premium on

SSRN in November 2020 by Florackis et al. (2023), with an average annual excess return of

11.88%, and is statistically significant at the 1% level. Double sorts confirm that cyber risk

captures a variation in stock returns when controlling for other factors.

We use asset pricing tests and find that the cyber risk exposure generates a signifi-

cant premium after controlling for market beta, book-to-market, size, momentum, operating

profitability, and investment aggressiveness (see Fama and French, 2015). This performance

shows up both in cross-section, with Fama and MacBeth (1973) regressions, and time se-

ries, with no significant joint alphas in Gibbons, Ross, and Shanken (1989) tests. Using

the Bayesian approach of Barillas and Shanken (2018), we show that the optimal subset of

factors pricing stock returns always includes our cyber risk factor.

We conduct tests to verify the robustness of our factor. First, we control that our baseline

measure, revised at each new filing, captures the latent cyber risk and not the immediate

effect of a cyberattack. To do so, we build a long-run cyber risk measure capturing the

cumulative cyber risk effect. Our results are virtually unchanged. Second, we control for

the possibility that firms in the cybersecurity business have risk occurrences that might

positively affect them. We also do not find any differences after that control.

Finally, we compare our model to the dictionary approach used by Florackis et al. (2023).

While the two measures are positively correlated, our measure performs better, especially

for firms that were assigned zero cyber risk using the dictionary approach.

The remainder of the paper proceeds as follows. Section 2 introduces the existing liter-

ature and develops related hypotheses. Section 3 presents the data and methods, Section 4

details the results, and Section 5 concludes.

2. Literature review

2.1. Vector representation of paragraphs

Le and Mikolov (2014) present an unsupervised algorithm called “Paragraph Vector”

that can learn fixed-length vector representations from variable-length pieces of texts, such

as sentences, paragraphs, and documents. For example, each piece of text is represented

by a dense vector that can be used for text classification and sentiment analysis. The ad-

vantage of this algorithm over other methods, such as bag-of-words, is that it learns the
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semantics of words and sentences. Lau and Baldwin (2016) perform a rigorous empirical

evaluation of this algorithm and provide recommendations on hyper-parameter settings for

general-purpose applications. Adosoglou, Lombardo, and Pardalos (2021) use the “Para-

graph Vector” algorithm with financial filings (10-K statements). They construct portfolios

based on the semantic differences between two consecutive financial reports of each firm.

They find that cosine similarity is the most effective similarity measure for neural network

embeddings, such as the ones obtained using the “Paragraph Vector” algorithm.

2.2. Cybersecurity costs

2.2.1. Direct estimations

Anderson, Barton, Böhme, Clayton, van Eeten, Levi, Moore, and Savage (2013) perform

a systematic study of the costs of cybercrime. They differentiate direct, indirect, and defense

costs and disentangle the different types of cybercrimes. They find that traditional crimes

that are conducted online, such as tax and welfare fraud, cost the typical citizen in the low

hundreds of dollars per year. Transitional crimes, such as credit card fraud, cost a few dollars

a year, while new crimes, such as the provision of botnets, cost tens of cents a year. Indirect

and defense costs, however, are much higher for transitional and new crimes. They conclude

that we should spend less anticipating cybercrime and more in response.

Anderson, Barton, Boehme, Clayton, Ganan, Grasso, Levi, Moore, and Vasek (2019)

revisit the previous study. They observe that even though payment frauds have doubled

over the seven years separating the initial studies, their average costs for the citizens have

fallen. They conclude that economic optimality would be spending less on cyberattack

prevention and more on response and law enforcement. Bouveret (2018) documents cyber

risk worldwide in the financial sector by analyzing the different types of cyber incidents

and identifying patterns. He uses a Value at Risk (VaR) type of framework. He finds an

average loss due to cyberattacks of USD 97 bn at the country level and a VaR between

USD 147 and 201 bn. He concludes that there are sizeable potential aggregated losses in

the financial sector, several orders of magnitude higher than the cyber insurance market

can cover. Romanosky (2016)) studies the composition and costs of cyber events. After

analyzing a sample of over 12,000 cyber events, he finds that the cost distribution is heavily

skewed, with an average cost of USD 6 mln and a median cost of USD 170,000 (comparable

to the firm’s annual IT security budget). He concludes that with these relatively low costs,

it may be that firms are engaging in a privately optimal level of security, and subsequently,

firms are investing in only a modest amount of data protection.
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2.2.2. Indirect estimations with municipal bonds

Andreadis, Kalotychou, Louca, Lundblad, and Makridis (2023) study the impact of in-

formation dissemination about cyberattacks through significant news sources on municipal-

ities’ access to finance, focusing on the municipal bond market. They employ a difference-

in-differences framework and find that the cumulative number of cyberattacks covered by

county-level news articles and the corresponding number of county-level cyberattack news

articles significantly adversely affect municipal bond yields. A 1% increase in the number of

cyberattacks covered by news articles leads to an increase in offering yields ranging from 3.7

to 5.9 basis points, depending on the level of attack exposure (number of major cyberattack

news in the county). Jensen and Paine (2023) perform a similar analysis, using data about

municipal IT investment, ransomware attacks, and bonds. They find no immediate effect on

bond yields of hacked towns in a 30-day window around a hack. In the 24 months following

a ransomware attack, they find that the municipal bond yields gradually declined and IT

spending increased. They argue that the declining bond yields are driven by a decrease in

the town’s cyber risk due to increased IT spending.

2.2.3. Indirect estimations with stock price reaction

Gordon, Loeb, and Zhou (2011) study the impact of information security breaches on

stock returns by computing the cumulative abnormal returns on a three-day event window

centered on newspaper reports of cybersecurity incidents. They find that news about infor-

mation security breaches had a statistically significant effect on the stock returns of publicly

traded firms. They also show that there has been a significant downward shift in the impact

of security breaches in the post-9/11 period. The findings from the study suggest that in

recent years, average information security breaches have become less costly, and there seems

to be a shift in attitude among investors toward viewing information security breaches as cre-

ating a corporate “nuisance” rather than a potentially serious economic threat. In a similar

study, Campbell, Gordon, Loeb, and Zhou (2003) find a highly significant negative mar-

ket reaction for information security breaches involving unauthorized access to confidential

data but no significant reaction when the breach does not include confidential information.

Johnson, Kang, and Lawson (2017) also study cumulative abnormal returns around cyber

security events. They show that, on average, publicly traded firms in the U.S. lost 0.37% of

their equity value when a data breach occurs. Breaches resulting from payment card fraud

contribute more to negative announcement returns than the other breach types, and the

adverse effects are more important for firms with card breaches larger than the average. For

the average firm, these breaches result in a 3% decline in firm equity value.
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Lending, Minnick, and Schorno (2018) study the relationship between corporate gov-

ernance, social responsibility, and the probability of data breaches, and they measure the

changes in stock returns following data breaches. They find that the financial impact of a

breach is visible in the long term, as data-breach firms have –3.5% one-year buy-and-hold ab-

normal returns. They also find that banks with breaches have significant declines in deposits,

and non-banks have significant declines in sales in the long run. Tosun (2021) studies how

financial markets react to unexpected corporate security breaches in the short and long run.

He finds that the market reaction in terms of trading volume, liquidity, and selling pressure

anticipates negative changes in stock prices, which turn out to be significant and negative

only the day after security breaches are publicly announced. He also finds that cyberattacks

affect firms’ policies in the long run. He concludes that security breaches represent unex-

pected adverse shocks to firms’ reputations. Kamiya, Jun-Koo, Jungmin, Milidonis, and

Stulz (2021) also find evidence of a reputation loss for target firms in the form of a decrease

in credit ratings or decreased sales growth.

2.2.4. Indirect estimations with disclosures

Gordon, Loeb, and Sohail (2010) assess the market value of voluntary information se-

curity disclosures of firms, using a sample of 1,641 disclosing and 19,266 non-disclosing

firm-year observations. They argue that voluntary disclosures about information security

could mitigate potential litigation costs and lower the firm’s cost of capital by reducing the

information asymmetry between a firm’s management and its investors. They find a positive

association of the voluntary disclosure variable with firm value, and the bid-ask spread for

firms that provide voluntary disclosures of information security is statistically lower than for

firms not providing such disclosure. Hilary, Segal, and Zhang (2016) also study cyber risk

disclosures. They find that the market reaction to cyber breaches is statistically significant

but economically limited.

Florackis et al. (2023) build a text-based cyber risk measure using a section of 10-K state-

ments called “Item 1.A Risk Factors”. They extract cyber risk-related sentences from this

section of the statements using a list of keywords and restrict the analysis to these sentences.

They consider recently hacked firms as a training sample and compute the cybersecurity ex-

posure of firms as the average similarity between the bag-of-words representation (vector

of the number of occurrences of each word in their dictionary) of the firm’s cybersecurity

sentences and the cybersecurity sentences of the training sample. They find that stocks

with high exposure have higher returns on average but perform worse in periods of cyber

risk. Jamilov et al. (2021) perform a similar analysis using quarterly earnings calls. They

construct the cyber risk measure using the frequency of cybersecurity-related keywords in
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the earnings calls. They build a cybersecurity factor by first computing the monthly average

cyber risk score of the subset of firms with non-zero scores and then fitting an AR(1) model

to the time series and extracting the residuals. This factor captures the shocks to cyber

risk. They find a factor structure in the firm-level measure of cybersecurity: the long-short

portfolio built on cybersecurity beta sorted portfolios has an average annual return of -3.3%

(the negative sign is because the factor captures shocks to cybersecurity).

We are only aware of four studies focusing on cyber risk and its factor structure using

disclosures). However, these studies use a dictionary approach that leaves many firm-year

observations with a cyber risk of zero (71% of firms in 2007 in the case of Florackis et al.

(2023) and over 98% of earnings calls in 2007 in the case Jamilov et al. (2021)). Furthermore,

this approach does not consider the context of the keywords, only their presence in the

disclosures. We use the “Paragraph Vector” algorithm to fill this gap to build a cyber risk

measure using firms’ 10-K statements. Hence, we define our null hypotheses as follows:

• Ha The cyber risk is not priced in the cross-section of stock returns

• Hb The cyber risk factor is subsumed by other factors

3. Data and methodology

3.1. Market data

We download public equity data from Wharton Research Data Services (WRDS), using

the data from the Center for Research in Security Prices (CRSP) and S&P Global Market

Intelligence’s Compustat database. We report the list of variables in Table A3. We write a

Python script that queries all available information from WRDS’ API and filters the firms

based on the existence of a 10-K filing with the SEC so that all of the retained firms have at

least one 10-K statement available. We extract monthly stock returns and financial ratios

for 7,059 firms between January 2007 and December 2022. Figure 1 depicts the industry

distribution of these firms using the Fama-French 12 industry classification.

We also download the one-month Treasury bill rate and returns on the market, book-

to-market (HML), size (SMB), momentum (MOM), investment (CMA), and operating prof-

itability (RMW) factors from the Kenneth French data repository3.

[Insert Figure 1 here.]

3Available at: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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3.2. 10-K statements

10-K statements are financial filings publicly traded companies submit annually to the US

Securities and Exchange Commission (SEC). They contain information such as companies’

financial statements, risk factors, and executive compensation. We use 10-K statements to

build a cyber risk measure (detailed in Section 3.4).

To download these statements, we use the index files from the SEC’s Edgar archives4.

These index files contain information about all the documents filed by all firms for a specific

quarter. Each line of the index file corresponds to a document and is structured as follows,

CIK—Company Name—Form Type—Date Filed—Filename

where Filename is the URL under which an HTML version of the document is available. To

identify firms, we use their Central Index Key (CIK), a number used by the SEC to identify

corporations and individuals who have filed disclosures. We develop a Python script that

goes through these index files and identifies URLs that correspond to 10-K statements using

the Form Type entry. Using the CIK entry, these URLs are then matched to one of the

7,059 firms mentioned in Section 3.1. We identify 60,470 10-K statements, corresponding to

8.6 statements per firm on average. Figure 2 shows the number of 10-Ks filed per year. This

number increases from 3,301 in 2007 to 5,370 in 2022.

[Insert Figure 2 here.]

3.3. Cybersecurity tactics

We use the MITRE ATT&CK5 cybersecurity knowledge base as a reference for cyber-

security descriptions. This knowledge base was created in 2013 to document cybersecurity

tactics, techniques, and procedures used by adversaries against particular platforms, such

as Windows or Google Workspace. Figure 3 illustrates the structure of the knowledge base.

Each sub-technique has a short description describing it. Table 1 shows two sub-technique

descriptions from the knowledge base.

[Insert Figure 3 here.]

[Insert Table 1 here.]

There are a total of 14 tactics: reconnaissance, resource development, initial access,

execution, persistence, privilege escalation, defense evasion, credential access, discovery, lat-

eral movement, collection, command and control, exfiltration, and impact. There are 785

sub-techniques across all tactics, all used in Section 3.4.

4Available at: https://www.sec.gov/Archives/edgar/full-index/
5Available at: https://attack.mitre.org/

7

https://www.sec.gov/Archives/edgar/full-index/
https://attack.mitre.org/


3.4. Methodology

3.4.1. Text preprocessing

10-K statements can be downloaded from the SEC Archives as HTML files (as explained

in Section 3.2). We use the BeautifulSoup6 Python library to extract the usable text from

these files. We remove the punctuation and numbers and set all letters to lowercase. Given

the resulting texts, we develop a Python script that uses the wordfreq7 and NLTK8 libraries

to divide the text into sentences, remove stop-words ( “the”, “is”, “and”,...) and remove the

most common words of the English language. Since these words appear frequently in the

texts, removing them allows us to focus on essential cybersecurity-related words.

After pre-processing, the average length of the cybersecurity sub-technique descriptions

from MITRE ATT&CK is close to 40 words (≈ 39.7). Based on this number, we write

a Python algorithm to merge consecutive sentences from 10-K statements into paragraphs

with an average length of close to 40 words after pre-processing. On average, we obtain 44

words per paragraph and 638 paragraphs per 10-K statement, with standard deviations of

2.6 words per paragraph and 304 paragraphs per 10-K statement.

3.4.2. Paragraph vector

The paragraph vector model, proposed by Le and Mikolov (2014), is an extension of the

word2vec model (Mikolov, Chen, Corrado, and Dean (2013)). The paragraph vector model

aims to learn fixed-length vector representations from variable-length pieces of text. The

main advantage of this model over other methods, such as bag-of-words, is that semantically

similar paragraphs are mapped close to each other in the vector space.

The model has two versions: a distributed memory model (DM) and a distributed bag-

of-words model (DBOW). In the distributed memory model, the algorithm trains to get

both word and paragraph vectors. During training, the concatenation or the average of

the paragraph vector and the vector representation of context words are used to predict

another word in the paragraph. In the distributed bag-of-words model, the paragraph vector

is trained to predict words in a window sampled from the paragraph. Word vectors are not

trained in this version. Figure 4 illustrates the two models.

[Insert Figure 4 here.]

Both models are unsupervised, as the paragraph vectors are learned from unlabelled data.

6Available at: https://www.crummy.com/software/BeautifulSoup/
7Available at: https://pypi.org/project/wordfreq/
8Available at: https://www.nltk.org/
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We use the implementation by Gensim called doc2vec9. To train the model, we use the

paragraphs from 10-K statements filed in 2007 as well as the 785 sub-technique descriptions

from MITRE, which together amount to more than 1.7 million training paragraphs. We

train DM and DBOW doc2vec models with various vector dimensions, epochs, and window

sizes using this sample. The baseline for the hyperparameters is taken from Lau and Baldwin

(2016) (see table A1).

To choose the best model, we compute the vector representations of the paragraphs

from 10 randomly chosen 10-K statements from 2008 (validation sample) using each model

and compare the highest-scoring paragraphs between the models (the scoring algorithm is

explained below). We choose the best model where the proportion of the highest-scoring

cyber risk-related paragraphs is the highest. Table 2 presents the parameters of the best-

performing doc2vec model, which is used for the remainder of this study. Table A2 gives the

top-scoring paragraphs from the validation sample (after pre-processing).

[Insert Table 2 here.]

3.4.3. Cosine similarity

We use cosine similarity to measure the distance between the vector representations of two

paragraphs, i.e., the cosine of the angle between the two vectors. As explained in Adosoglou

et al. (2021), cosine similarity is the most effective similarity measure as the orientation of

the embedding vectors is more stable than their magnitude due to the random initialization

of the weights of the neural networks.

Cosine similarity is a number between -1 and 1. The closer the vectors, the higher

the value. As detailed in Section 3.4.4, we only use the positive cosine similarities and

set the negative similarities to zero. The similarity between two paragraphs, with vector

representations v1 and v2, is therefore computed as sim = max(0, v1·v2
∥v1∥∥v2∥).

3.4.4. Cyber risk score

The cyber risk score is based on the cosine similarities with the cybersecurity descriptions

from MITRE ATT&CK. First, we compute the vector representation of every paragraph

of every 10-K statement using the trained doc2vec model. We also compute the vector

representation of every sub-technique description from MITRE ATT&CK. Next, we compute

the cosine similarity of each paragraph from the 10-K statements with each of the MITRE

descriptions. This gives 785 similarities for each paragraph from the 10-K statements. The

cyber risk score of a paragraph is the maximum value out of those 785 similarities. Finally,

9Available at: https://radimrehurek.com/gensim/models/doc2vec.html
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we compute the score of a 10-K statement as the average score of the 1% of its highest-scoring

paragraphs.

This algorithm assumes that a typical 10-K statement has at most six or seven cyber

risk-related paragraphs, representing 1% of the paragraphs (there are 638 paragraphs per

10-K statement on average). This method has several advantages. First, taking a percentage

of the total number of paragraphs, as opposed to a fixed number of paragraphs, makes it

possible to have a meaningful comparison between 10-K statements that are much shorter

or much longer than the others. Second, considering only the highest-scoring paragraphs

makes the cyber risk score of the 10-K statement solely dependent on paragraphs that are

most likely to be cyber risk-related.

As Section 3.4.3 mentions, the cosine similarity takes values between -1 and 1. We only

consider positive values for several reasons. First, a paragraph with a meaning “opposite”

to cybersecurity is not intuitive. Upon inspecting the paragraphs with negative values in

the validation sample, we cannot uncover meaningful differences between paragraphs with

negative scores and those with scores close to zero. Furthermore, only considering posi-

tive similarities guarantees that the cyber risk scores are between 0 and 1, making them

comparable to those obtained using dictionary methods such as in Jamilov et al. (2021).

Figure 5 shows the distribution of the cyber risk scores of the paragraphs from the 10-K

statements of Meta Platforms, Inc. and Tesla, Inc. filed in 2022. The paragraphs in red are

the top 1% of paragraphs with the highest cyber risk scores. We compute the 10-K cyber

risk scores as the average score of this highest percentile. This yields a score of 0.605 for

META and 0.563 for TSLA.

[Insert Figure 5 here.]

3.5. Asset pricing tests

We use the two-step Fama-MacBeth method (Fama and MacBeth, 1973) as follows. First,

we estimate security betas using time series regressions with 3-year rolling windows. Second,

we sort firms into 20 value-weighted portfolios based on their cyber beta. We compute the

factor exposures of the portfolios and standardize the portfolio betas for economic interpre-

tation. Finally, we estimate gammas using cross-sectional regressions of the portfolio returns

on their lagged factor exposures.

Next, we use the time series approach of Gibbons et al. (1989) (hereafter, GRS) to test for

portfolio efficiency. The GRS statistics allow testing whether the pricing errors are jointly

equal to zero when using a model with several traded factors. We also use 20 portfolios

built on factor betas as test assets. We implement the GRS test and compare two model
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specifications, the five-factor model from Fama and French (2015) and the same five factors

plus the cyber risk factor.

We implement the Bayesian approach of Barillas and Shanken (2018). Using this method,

it is possible to compute the probability that a given factor model is best to price factor

returns. The method does not presume that any model under consideration exactly satisfies

the requirement that all alphas are zero, as it is possible that some relevant factors have not

been identified. The approach compares the relative success of the models in predicting the

data. The method is based on Barillas and Shanken (2017). The method looks at the extent

to which a model prices the factors left out and not the extent to which the model prices

test assets. The unrestricted factor model is,

Rt = α + βFt + ϵt, ϵt ∼ N(0,Σ), (1)

and the null hypothesis is H0 : α = 0. The prior for α is concentrated at zero under the

null hypothesis. Under the alternative, they assume a multivariate normal informative prior

for α: P (α|β,Σ) = MVN(0, kΣ), where k reflects the beliefs about the potential magnitude

of deviations from the expected return relation. By assumption, all the models contain the

market factor. The marginal likelihood of a model is given by,

ML = MLU(F |Mkt)×MLR(F
∗|Mkt, F )×MLR(R|Mkt, F, F ∗), (2)

where MLU is the unrestricted regression marginal likelihood, MLR is the restricted regres-

sion marginal likelihood (α constrained to zero), F are the included factors and F ∗ are the

excluded factors. The MLU(X|Y ) notation assumes the following regression equation:

Xt = α+ βYt + ϵt. The unrestricted and restricted regression marginal likelihoods are given

by,

MLU = |Y ′Y |−N/2|S|−(T−K)/2Q

MLR = |Y ′Y |−N/2|SR|−(T−K)/2,
(3)

where |S| and |SR| are the determinants of the N × N cross-product matrices of the OLS

residuals, T is the number of periods, K the number of factors, and N the number of

portfolios. The scalar Q is given by,

Q =

(
1 +

a

a+ k
(W/T )

)−(T−K)/2(
1 +

k

a

)−N/2

, (4)

where a = (1+Sh(F )2)/T , k = (Sh2
max−Sh(Y )2)/N, W is the GRS F-statistic times NT/(T−N−K),
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Sh(Y )2 the squared sample Sharpe Ratio. Under the alternative prior, k is the expected

increment to the squared Sharpe ratio from the addition of one more factor. Shmax is

the maximum expected Sharpe ratio. Barillas and Shanken (2018) take Shmax = 1.5 ×
ShMkt, which corresponds to a square root of the prior expected squared Sharpe ratio for

the all factors-tangency portfolio 50% higher than the market Sharpe ratio. They call this

value the prior multiple. Similarly, we use 1.5 as the baseline value for the prior multiple

but experiment with several values as in the original paper. The posterior probabilities,

conditional on the data D, are given by Bayes’ rule,

P (Mj|D) =
MLj × P (Mj)∑
i

MLi × P (Mi)
, (5)

where P (Mj) is the prior probability of the model. Barillas and Shanken (2018) use uniform

prior probabilities to avoid favoring one model over another. Hence, they cancel out in

the division and can be omitted. MLR(R|Mkt, F, F ∗), in equation 2, is the same for all

combinations of F and F ∗. Hence, it also cancels out in the division and can be omitted.

Following the methodology of Barillas and Shanken (2018), we compute the posterior

probabilities for each month from January 2010 until December 2022. We use all of the data

available from January 2009 until the given time for each computation.

4. Results

4.1. Cyber risk measure

Table 3 presents descriptive statistics of the cyber risk measure and various firm charac-

teristics. The average cyber risk is 0.52, and its distribution is positively skewed, meaning

there are more very high-risk firms than very low-risk ones. Overall, the cyber risk dis-

tribution is narrow with a standard deviation of 0.03 and a spread between the top and

bottom percentiles of 0.14. The correlation coefficients between our cyber risk measure and

firms’ characteristics are small, except for Tobin’s Q (0.23) and the Firm age (-0.17). The

latter coefficient is consistent with the view that older firms are less subject to cyberattacks

since their core businesses are less likely to be IT-related. Given that all other coefficients

are below 0.15 in absolute value, we are confident that our measure is orthogonal to other

characteristics known to price stock returns.

[Insert Table 3 here.]
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4.1.1. Time series and industry properties

Figure 6 presents the cross-sectional average cyber risk for every year in the study sample.

We observe a monotonic positive time trend in line with the results of Florackis et al. (2023)

and Jamilov et al. (2021).

[Insert Figure 6 here.]

Figure 7 shows the average cyber risk by industry, using the Fama-French 12 industry clas-

sification. Industries that rely on technology systems such as “Business Equipment” and

“Telephone and Television Transmission” have high cyber risk, while sectors such as “Oil

and Gas” and “Chemicals”, that traditionally rely less on technology systems have lower

scores. Nonetheless, the variation of cyber risk across industries remains limited, similar to

the overall cyber risk distribution.

[Insert Figure 7 here.]

4.1.2. Determinants of firm-level cyber risk

To investigate the dependence of cyber risk on firm characteristics, we perform two

regressions, presented in Table 4. In Model 1, we control for year- and firm-fixed effects, and

in Model 2, we control for year- and industry-fixed effects. In both models, firm age has a

statistically significant negative coefficient at the 1% level, reinforcing the view that younger

firms have higher cyber risk. The book-to-market coefficient is negative and significant at

the 1% level, meaning value firms have a lower cyber risk than growth firms. In Model 2,

the intangible assets to total assets coefficient is positive and statistically significant at the

1% level, which supports the view that firms with more intangible assets, such as patents

or software, have a higher cyber risk. The R-squared is low for both models, showing that

cyber risk can not be readily explained by firm characteristics.

[Insert Table 4 here.]

4.2. Univariate portfolio sorts

We sort firms into portfolios based on their cyber risk and study the returns on the

portfolios. We use a firm characteristic approach based on the results of Daniel and Titman

(1997), who argue that characteristics and not covariances determine expected returns. More

precisely, we assign firms to five portfolios based on the cyber risk score of their most recent

10-K statement. We rebalance the portfolios quarterly to allow for listings and delistings and

incorporate information from new 10-K statements. We build five value-weighted portfolios,

where Portfolio 1 (5) is the low (high) cyber risk portfolio.
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4.2.1. Full sample

We track the performance of the portfolios from January 2009 until December 2022.

Figure 8 shows the evolution of the cumulative returns of the market and the five portfolios.

We observe that the higher the cyber risk of the portfolio, the higher the cumulative returns.

Portfolio 5 significantly outperforms the market.

[Insert Figure 8 here.]

Table 5 presents the excess returns and alphas of the portfolios with respect to three standard

factor models. The average monthly excess returns increase monotonically from 0.88% to

1.44%, from low to high cyber risk portfolios. The long-short portfolio, going long in Portfolio

5 and short in Portfolio 1, has excess returns and alphas that are statistically significant,

even when controlling for the Fama and French (2015) five-factor model.

[Insert Table 5 here.]

4.2.2. Before and after Florackis et al. (2023) was first released

We implement the same analysis as in Section 4.2.1 above, but stopping the study period

at the time of the first release of Florackis et al. (2023) on SSRN (January 2009 until October

2020) and then after the release (November 2020 until December 2022).

Table A4 presents the results using the period before the publication. We observe that the

long-short portfolio has statistically significant positive excess returns and alphas (significant

at the 1% level). The outperformance of Portfolio 5 and the underperformance of Portfolio

1 is also more substantial, with the long-short portfolio having an average monthly excess

return of 0.94%. Portfolio 1 has statistically significant negative alphas at the 1% level.

Table A5 presents the results using the period after the release. Portfolio 1 has a high

average monthly excess return of 2.16%, significant at the 5% level, and outperforms the

other portfolios whose excess returns are not statistically significant. The long-short portfolio

has negative average excess returns of -1.49%, significant at the 5% level, and statistically

significant negative alphas when controlling for the market at the 1% level. Still, the alphas

are not statistically significant when controlling for the factors from Carhart (1997) or Fama

and French (2015).

There could be several explanations for these results. It could be that the publication

made some arbitrageurs trade stocks based on the cyber risk measure, which results in lower

returns post-publication, as explained in McLean and Pontiff (2016). It is also possible that

because of cybersecurity events, high-risk firms lost value while low-risk firms appreciated.
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For instance, T-Mobile was a victim of a cyberattack in August 2021 during which more

than 76.6 million current and former customers’ information had been accessed10. Fur-

thermore, the U.S Treasury Department published a report that as of June 2021, financial

institutions had already reported 635 suspicious ransomware-related activities which consti-

tuted a 30% increase from all reported activity in 202011. The report also found that the

cost of ransomware payments increased. These events, in combination with others, could

explain why Portfolio 5 has low returns and the long-short portfolio has negative returns.

However, it is essential to note that the study sample after the publication is much smaller,

and as a result, the observations could be spurious.

4.3. Double sorts

We also perform double sorts, where we first sort on a firm characteristic other than cyber

risk and then sort the resulting portfolios again on cyber risk. Similarly to the previous

section, we build value-weighted portfolios that we rebalance quarterly. We use three double

sorts, first sorting on market beta, book-to-market ratio, or firm size and then sorting again

on cyber risk. Table A6 shows the average excess returns of each portfolio. The factor

structure of cyber risk is more prevalent among large firms, low to medium book-to-market

firms, and medium beta firms. The long-short portfolio has positive excess returns for most

of the portfolio sorts. This further supports the view that cyber risk captures a variation in

average returns by controlling for market beta, firm size, and book-to-market value.

4.4. Fama-Macbeth regressions

Table 6 presents the results of Fama-Macbeth regressions. Model 1 only includes the

market factor. The coefficient on the market is insignificant, and the average adjusted R-

squared is small, showing that the CAPM can not price the cyber beta-sorted portfolios.

In Model 2, we use the cyber risk proxy, and as shown, the risk premium is statistically

significant, and the average adjusted R-squared increases from virtually 0 to 0.13. Models 3,

4, and 5 control for other common factors, and the cyber risk premium stays economically

and statistically significant.

The economic interpretation of this table is that a one-standard-deviation increase in

cyber risk increases returns by 0.18% per month. This increase is statistically significant at

the 10 or 5% level, even when controlling for other common factors.

[Insert Table 6 here.]

10Available at:https://www.t-mobile.com/news/network/cyberattack-against-tmobile-and-our-customers
11Available at: https://cyberscoop.com/ransomware-treasury-cryptocurrency-sanctions/
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Table A7 presents the results of Fama-Macbeth regressions, including the Fama-French

12 industries (4 of them have to be dropped due to collinearity). The cyber risk premium is

reduced to 0.156% but still significant at the 10% level.

The previous results are obtained using portfolios sorted on cyber risk. As highlighted by

Lewellen, Nagel, and Shanken (2010), asset pricing tests, such as Fama-Macbeth regressions,

can be improved by using additional portfolios sorted on other firm characteristics. Following

their recommendations, we expand the set of test assets with portfolios sorted by industry.

Table A8 presents the results. The cyber risk premium of 0.176% per month is still significant

at the 5% level.

4.5. GRS test

We implement the GRS test as follows: we build 20 value-weighted portfolios sorted

on cyber risk, then compute the GRS test statistic using the five-factor model from Fama

and French (2015) and the same model plus the cyber risk factor. We report the results

and repeat this procedure, sorting portfolios on market beta, firm size, and book-to-market

ratio.

Table 7 presents the results. The GRS test statistic is smaller for the model containing

the cyber risk factor when sorting on cyber risk, size, and book-to-market. Interestingly,

when sorting on firm size and book-to-market, we reject the null hypothesis that αi = 0 ∀i,
for the five-factor model but not for the model containing the cyber risk factor. This is not

the case when sorting on market beta. However, we can not reject the null hypothesis for

either model.

[Insert Table 7 here.]

These results suggest that a subset of factors could explain the cross-section of returns.

4.6. Bayesian factor model selection

Given the results of the GRS tests, a subset of factors could potentially explain the

cross-section of returns. The analysis explained in Section 3.5 allows us to determine the

combination of factors that are best in terms of pricing returns. Figure 9 presents the

posterior probabilities of the five most likely models ranked at the end of the sample. All five

models contain the cyber risk factor, and the model with the highest probability, of 21.18%,

is the model containing the market, book-to-market, investment, operating profitability, and

cyber risk factors.

[Insert Figure 9 here.]
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Figure 10 presents the cumulative factor probabilities, that is, the sum of probabilities of all

models containing the factor. The cyber risk factor has a cumulative probability of 91.66%

at the sample’s end. Unlike the remaining factors, the investment and operating profitability

factors also have very high cumulative probabilities.

[Insert Figure 10 here.]

Finally, we study the sensitivity of the model probabilities to the prior multiple. We repeat

the analysis using three other values of prior multiple: 1.25, 2, and 3 (similarly to Barillas

and Shanken (2018)). Table 8 reports the posterior model probabilities at the end of the

sample for the top five models for each prior multiple. We observe that the top five models

are the same for each prior multiple. Furthermore, the book-to-market factor is no longer in

the most likely model for higher values of the prior multiple.

[Insert Table 8 here.]

4.7. Robustness tests

4.7.1. Long-run cyber risk

By design, the cyber risk computed in Section 3.4.4 depends only on each company’s

most recent 10-K statement. It is possible that a firm discusses cybersecurity concerns and

risks extensively in its 10-K statement in year T , for example, because of an increasing

number of cyberattacks in the industry, resulting in a high cyber risk score. Having focused

on cybersecurity in year T and not having been attacked itself, the firm could decide not to

talk about cyber risks in its following 10-K statements (in years T + i) or not as much as

in year T , even though it still has similar cyber risks. The previously computed cyber risk

measure would miss these cases as it has no memory.

Using the cyber risk defined in Section 3.4.4, we compute the expanding average cyber

risk score to study the long-run cyber risk of firms. The long-run cyber risk score in year

T is the average of its simple cyber risk scores from 2008 to year T . This new measure

could account for the companies described above. The advantage of using the long-run

average instead of the long-run maximum is that it does not discard the observations. This

is beneficial when considering firms in the following situation: consider a firm that discusses

cyber risks in its 10-K statement in year T following a cyberattack or data breach. The

firm might purchase protection (insurance or software), minimize its future cyber risk, and

not discuss this risk in its subsequent 10-K statements. The low cyber risk scores in the

upcoming years represent the firm’s reality and should not be discarded.
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We repeat the portfolio sorts from Section 4.2 using the long-run cyber risk to sort firms.

Table A9 presents the results. We observe no significant change from Table 5, and the long-

short portfolio remains significant at the 5% or 10% level. These results indicate that firms

incorporate all available information in their newest 10-K statements regarding their cyber

risk; hence, incorporating information from past statements does not improve the estimation

of the cyber risk.

4.7.2. Controlling for cybersecurity firms

The cyber risk score constructed in Section 3.4.4 does not make a distinction between

firms that discuss cybersecurity because they consider it a risk and firms that are cyberse-

curity solutions providers, for example, Fortinet12.

As there is no dedicated cybersecurity industry classification, we identify cybersecurity

firms using the HACK ETF13. As explained in the fund’s description, this ETF invests

in companies providing cybersecurity solutions, including hardware, software, and services.

As cybersecurity providers, these firms are expected to discuss cybersecurity in their 10-K

statements extensively, resulting in a false high cyber risk score. Indeed, these firms have

an average score of 0.59, which is in the top 3% of cyber risk scores. We repeat the analysis

from Section 4.2, and we exclude the holdings of the HACK ETF from the universe of firms.

Table A10 presents the results. The results for Portfolios 1, 2, and 3 are unchanged, and

the excess returns and alphas of Portfolios 4 and 5 increase. Furthermore, we observe that

the t-statistics on Portfolios 4 and 5 also increase. These results support the view that cyber

risk is priced.

4.8. Comparison with the work of Florackis et al. (2023)

In order to compare our cyber risk measure to the one of Florackis et al. (2023), we start

by computing the correlation between the two measures and obtain 0.34.14 Encouragingly,

the correlation is positive but relatively low, which shows that our measure is novel.

The methodology of this paper brings several improvements to the one used by Florackis

et al. (2023). First, the Paragraph Vector model is more potent in capturing cyber risk-

related content in 10-K statements than a dictionary approach. Indeed, the dictionary will

never contain all the words needed to identify all cyber risk-related text. The dictionary

used by Florackis et al. (2023) can identify a large number of these texts unless the authors

12Available at: https://www.fortinet.com/
13Available at: https://etfmg.com/funds/hack/
14The Florackis et al. (2023) data is available at:

https://alucutac-my.sharepoint.com/personal/christodoulos louca.
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of the 10-K statements use slightly different wording than the others, which is not uncom-

mon. For example, table 9 shows three paragraphs that were missed by their approach and

consequently the firm-year observations got a cyber risk score of 0. Using the methodology

presented in this paper, these 10-K statements were given an above-average cyber risk score.

[Insert Table 9 here.]

Furthermore, as mentioned in the literature review, the dictionary approach leaves many

firm-year observations with cyber risk scores of zero. However, as shown by the examples

in table 9, some of those firms are incorrectly identified as low-risk firms. To investigate

this further, we use our cyber risk measure to sort firms with a zero cyber risk score (using

the measure of Florackis et al. (2023)) into three portfolios. The average excess returns and

alphas of the portfolios are shown in table 10 below. The average excess returns and alphas

increase with the cyber risk (as measured using our indicator) and the long-short portfolio

has economically significant excess returns and alphas.

[Insert Table 10 here.]

5. Conclusion

This paper implements a doc2vec model to estimate firms’ cyber risk based on their 10-K

statements. We then use this cyber risk measure in various asset pricing tests. Our results

support the view that cyber risk is priced in the cross-section of stock returns. Indeed, a

long-short strategy on cyber risk sorted portfolios has a positive and statistically significant

alpha compared to traditional factor models and an average monthly excess return of 0.56%.

We also perform this analysis limited to the sub-periods before and after the first release

of Florackis et al. (2023). While the long-short strategy has statistically significant excess

returns and alphas at the 1% level before the release, it has negative average excess returns

after. We investigate the interactions of cyber risk with the other sources of risks by perform-

ing double sorts. The results show that cyber risk captures a variation in average returns by

controlling for market beta, firm size, and book-to-market value. Furthermore, we show that

cyber risk has a significant premium using Fama-Macbeth regressions. Using the GRS test

of Gibbons et al. (1989) and the methodology from Barillas and Shanken (2018), we show

that the cyber risk factor helps to price stocks and is present in the five most likely factor

models. We also compute the long-run cyber risk as the expanding average of the cyber risk.

We perform the portfolio sorts and observe that the results are very similar. Hence, we con-

clude that firms incorporate all available information about cyber risk in their newest 10-K

statement. We exclude cybersecurity firms from the sample and perform the portfolio sorts.
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We find that the average monthly returns of the two high cyber-risk portfolios increase, and

the others are left unchanged, supporting the view that the alpha is due to the cyber risk.

Finally, we compare our measure to the one of Florackis et al. (2023) and conclude that our

method performs better at capturing cyber risk.

This research can be extended in two directions. First, we aim to repeat the study for

the stock markets of different countries. Second, we intend to estimate firms’ exposure to

other risk factors using this machine learning approach, for instance, legislative risk. These

risks could be readily captured by changing the MITRE knowledgebase to one close to the

risk under scrutiny.
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Figures and Tables

Fig. 1: Industry distribution

Distribution of firms in the 12 Fama-French industries. Standard Industrial Classification (SIC) codes are
obtained from CRSP. The conversion table, from SIC to 12 Fama-French industries, is available on the
Kenneth French data repository.
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Fig. 2: Number of 10-Ks per year

Number of companies, in the study sample, that have filed a 10-K statement in a given calendar year.
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Tactic

Tactics represent the “why” of an ATT&CK technique or sub-technique. It is the ad-
versary’s tactical goal: the reason for performing an action. For example, an adversary
may want to achieve credential access, collect data or run malicious code.

Technique

Techniques represent “how” an adversary achieves a tactical goal by performing
an action. For example, an adversary may dump credentials to achieve credential
access or may use social engineering to run malicious code.

Sub-technique

Sub-techniques describe the different types of a technique. For example,
when trying to run malicious code for social engineering, the adversary may
use a malicious link, a malicious file or a malicious image for execution.

Fig. 3: Structure of the tactic descriptions on MITRE ATT&CK
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Description
Tactic Credential Access Adversaries may forge web cookies that can be

used to gain access to web applications or
Internet services. Web applications and services
(hosted in cloud SaaS environments or
on-premise servers) often use session cookies to
authenticate and authorize user access.

Technique Forge Web Credentials

Sub-technique Web Cookies

Tactic Reconnaissance Adversaries may gather employee names that can
be used during targeting. Employee names can
be used to derive email addresses as well as to
help guide other reconnaissance efforts and/or
craft more-believable lures.

Technique Gather Victim Identity Information

Sub-technique Employee Names

Table 1: Examples of sub-technique descriptions from MITRE ATT&CK
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Fig. 4: “Paragraph Vector” model versions

The images were taken from Le and Mikolov (2014).
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Method Training Size Vector Size Window Size Min Count Sub-Sampling Negative Sampling Epoch

DBOW 1.7M 200 15 5 10−5 5 50

Table 2: doc2vec parameters

Parameters of the chosen doc2vec model. DBOW stands for distributed bag-of-words.
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Fig. 5: Paragraph level score distributions for Meta Platforms and Tesla

The paragraphs are the ones from the 10-Ks filed in 2022. The paragraphs within the top 1% of cyber risk
scores are in red.
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Mean SD P1 P25 P50 P75 P99 Correlation with
cyber risk

Cyber risk 0.52 0.03 0.47 0.50 0.52 0.54 0.61 -
Firm Size (ln) 20.18 2.39 13.15 18.53 20.25 21.86 25.46 -0.10
Firm Age (ln) 2.70 1.06 -0.88 2.21 2.93 3.41 4.07 -0.17
ROA -0.11 0.47 -2.57 -0.07 0.02 0.07 0.36 -0.05
Book to market ratio 0.68 1.15 0.02 0.24 0.46 0.81 4.42 -0.12
Tobin’s Q 2.20 2.14 0.58 1.09 1.50 2.37 12.15 0.23
Market Beta 1.20 0.84 -1.01 0.71 1.13 1.60 3.90 0.00
Intangibles/Assets 0.17 0.21 0.00 0.00 0.07 0.27 0.78 0.14
Debt/Assets 0.53 0.28 0.06 0.32 0.52 0.70 1.48 -0.09
ROE -0.08 0.61 -2.96 -0.08 0.07 0.15 0.88 -0.06
Price/Earnings 1.55 112.17 -511.4 -4.44 12.57 23.82 294.46 -0.01
Profit Margin -0.38 5.53 -25.20 0.21 0.36 0.57 0.94 0.00
Asset Turnover 0.92 0.74 0.01 0.39 0.76 1.26 3.54 -0.03
Cash Ratio 1.85 3.41 0.01 0.23 0.65 1.81 18.20 0.11
Sales/Invested Capital 1.54 1.59 0.01 0.56 1.08 1.94 8.88 -0.01
Capitalization Ratio 0.30 0.32 0.00 0.02 0.24 0.47 1.54 -0.10
R&D/Sales 0.67 4.21 0.00 0.00 0.00 0.08 19.40 0.03
ROCE 0.00 0.45 -1.97 -0.02 0.09 0.17 0.95 -0.07

Table 3: Descriptive statistics of the cyber risk measure and firm characteristics

Firm-level characteristics are winsorized at the 1st and 99th percentile (by year). The characteristics are
defined in Table A3.
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Fig. 6: Evolution of the average cyber risk across all firms
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Fig. 7: Average value of the cyber risk across industries

Firms are classified into industries using the Fama-French 12 industry classification. Standard Industrial
Classification (SIC) codes are obtained from CRSP. The conversion table, from SIC codes to the 12 Fama-
French industries, is available on the Kenneth French data repository.
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Dependent variable: Firm-level indicator of cyber risk
Model 1 Model 2

Constant -0.416∗∗∗ -0.738∗∗∗

[-24.89] [-14.22]
Firm Size (ln) 0.019 0.024

[0.56] [1.22]
Firm Age (ln) -0.114∗∗∗ -0.211∗∗∗

[-3.91] [-12.09]
ROA 0.057 0.0321∗∗

[0.79] [2.27]
Book to Market -0.023∗∗∗ -0.066∗∗∗

[-4.82] [-3.67]
Tobin’s Q 0.019∗∗∗ 0.112∗∗∗

[2.84] [7.87]
Market Beta -0.009 -0.013

[-1.54] [-1.31]
Intangibles/Assets -0.026∗∗ 0.082∗∗∗

[-2.04] [5.51]
Debt/Assets -0.032∗∗ 0.032

[-2.49] [1.21]
ROE 0.002 -0.009

[0.37] [-0.72]
Price/Earnings 0.005 0.002

[1.20] [0.29]
Profit Margin 0.006 0.048∗∗∗

[1.18] [3.98]
Asset Turnover -0.014 -0.135∗∗∗

[-0.67] [-4.49]
Cash Ratio 0.001 0.019

[0.09] [1.19]
Sales/Invested Capital 0.008 0.104∗∗∗

[0.54] [3.80]
Capital Ratio 0.001 -0.191∗∗∗

[0.02] [-8.49]
R&D/Sales -0.001 -0.003

[-0.22] [-0.30]
ROCE 0.005 0.000

[0.71] [0.01]
Year fixed effect Yes Yes
Industry fixed effect No Yes
Firm fixed effect Yes No
Observations 27760 27760
R-squared 0.2944 0.3921

Table 4: Determinants of firm-level cyber risk

Results of regressions of the cyber risk on firm characteristics. t-statistics are reported in brackets. The
variables are standardized, and the standard errors are clustered at the firm level. *, **, and *** indicate
significance at the 10%, 5% and 1% levels, respectively. The characteristics are defined in Table A3.
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Fig. 8: Cyber risk sorted portfolio cumulative returns

Firms are sorted into value-weighted portfolios based on their cyber risk. The portfolios are rebalanced
quarterly. “Market” refers to the market portfolio obtained from the Kenneth French data repository. One
unit of the ordinate axis unit is 100% return.
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Value Weighted Portfolios

L H H-L
P1 P2 P3 P4 P5 P5-P1

A. Portfolios sorted by cyber risk
Average excess return 0.88∗∗∗ 1.02∗∗∗ 1.13∗∗∗ 1.20∗∗∗ 1.44∗∗∗ 0.56∗

[3.20] [3.88] [3.73] [4.65] [4.19] [1.72]
CAPM alpha -0.22 -0.06 -0.04 0.07 0.31 0.54

[-0.95] [-0.42] [-0.35] [1.21] [1.61] [1.32]
FFC alpha -0.14 -0.01 0.03 0.04 0.24∗ 0.38∗

[-1.20] [-0.15] [0.41] [0.62] [1.93] [1.87]
FF5 alpha -0.16 -0.08 0.03 0.04 0.25∗ 0.41∗∗

[-1.62] [-0.89] [0.39] [0.54] [1.89] [2.21]

B. Characteristics
Number of firms 615.7 615.1 615.1 615.1 615.5 -
Cyber risk 0.493 0.507 0.518 0.532 0.572 -
Sharpe Ratio 0.637 0.775 0.801 0.892 1.037 0.628
Treynor Ratio 0.031 0.037 0.038 0.042 0.050 3.283
Sortino Ratio 0.942 1.199 1.263 1.462 1.790 2.733

Table 5: Average monthly excess returns and alphas (in percent)

FFC refers to the four-factor model of Carhart (1997), and FF5 refers to the five-factor model of Fama and
French (2015). Panel B shows the average number of firms in each portfolio, the average cyber risk, the
annualized Sharpe ratio, the annualized Treynor ratio, and the annualized Sortino ratio of the portfolios.
Newey-West (Newey and West, 1994) t-statistics are reported in brackets. *, **, and *** indicate significance
at the 10%, 5% and 1% levels, respectively. Period: January 2009–December 2022
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Dependent variable: Monthly Portfolio returns

(1) (2) (3) (4) (5)

Market -0.005 -0.025 0.065 0.024
[-0.064] [-0.429] [0.997] [0.275]

Cyber risk 0.183∗ 0.182∗∗ 0.183∗ 0.172∗∗

[1.794] [1.994] [1.913] [2.037]
HML 0.027 -0.012

[0.439] [-0.126]
SMB 0.069 0.049

[0.835] [0.536]
MOM 0.011

[0.153]
RMW -0.085

[-1.436]
CMA -0.088

[-0.816]
Constant 1.445∗∗∗ 1.465∗∗∗ 1.457∗∗∗ 1.455∗∗∗ 1.476∗∗∗

[5.311] [5.540] [5.493] [5.413] [5.450]

R2adj 0.007 0.134 0.186 0.258 0.284
MAPE 1.360 1.312 1.233 1.064 0.987

Table 6: Fama-MacBeth regressions

The betas are standardized before the second step regressions. HML and SMB refer to the book-to-market
and size factors from Fama and French (1992). MOM refers to the momentum factor from Carhart (1997).
CMA and RMW refer to the investment and operating profitability factors from Fama and French (2015).
R2adj is the average adjusted R-squared and MAPE is the mean average pricing error. Newey-West t-
statistics are reported in brackets. *, **, and *** indicate significance at the 10%, 5% and 1% levels,
respectively.
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GRS p value R2 GRS p value R2

Sorted on cyber risk Sorted on market beta

FF5 1.211 0.253 0.869 0.712 0.802 0.783
FF5 + CyberFactor 0.947 0.530 0.886 0.825 0.680 0.801

Sorted on size Sorted on book-to-market

FF5 1.490 0.093 0.879 1.709 0.038 0.878
FF5 + CyberFactor 1.458 0.106 0.880 1.417 0.124 0.883

Table 7: GRS test statistics

R squared values are averaged over the 20 portfolios. FF5 refers to the five-factor model from Fama and
French (2015) and CyberFactor refers to the long-short portfolio from Section 4.2.1.
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Fig. 9: Factor model posterior probabilities

The figure shows the posterior probabilities for the top 5 models, ranked at the end of the sample. Mkt refers
to the excess return of the market from the Kenneth French data repository. HML and SMB refer to the
book-to-market and size factors from Fama and French (1992). CMA and RMW refer to the investment and
operating profitability factors from Fama and French (2015). CyberFactor refers to the long-short portfolio
from Section 4.2.1. Prior Multiple = 1.5
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Fig. 10: Cumulative posterior factor probabilities

Cumulative posterior probabilities are the sum of probabilities of all models containing the factor. HML
and SMB refer to the book-to-market and size factors from Fama and French (1992). MOM refers to the
momentum factor from Carhart (1997). CMA and RMW refer to the investment and operating profitability
factors from Fama and French (2015). CyberFactor refers to the long-short portfolio from Section 4.2.1.
Prior Multiple = 1.5
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Prior Multiple 1.25 1.5 2 3

Mkt HML RMW CMA CyberFactor 19.40 21.18 21.31 18.79
Mkt RMW CMA CyberFactor 16.54 19.01 21.89 26.08
Mkt SMB HML RMW CMA CyberFactor 18.38 18.38 15.92 10.41
Mkt SMB RMW CMA CyberFactor 11.92 12.85 12.81 11.24
Mkt CMA CyberFactor 5.76 5.87 7.15 11.18

Table 8: Prior sensitivity of the posterior model probabilities

The table shows the posterior model probabilities (in percent) for the top 5 models (ranked at the end of the
sample) for different values of the prior multiple. The top 5 models are the same for every prior multiple.
Mkt refers to the excess return of the market from the Kenneth French data repository. HML and SMB
refer to the book-to-market and size factors from Fama and French (1992). CMA and RMW refer to the
investment and operating profitability factors from Fama and French (2015). CyberFactor refers to the
long-short portfolio from Section 4.2.1
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Ticker Filling year Paragraph

STX 2008 System failures caused by events beyond our control could adversely affect com-
puter equipment and electronic data on which our operations depend. Our op-
erations are dependent upon our ability to protect our computer equipment and
the electronic data stored in our databases from damage by, among other things,
earthquake, fire, natural disaster, power loss, telecommunications failures, unau-
thorized intrusion and other catastrophic events. As our operations become more
automated and increasingly interdependent, our exposure to the risks posed by
these types of events will increase. While we continue to improve our disaster re-
covery processes, system failures and other interruptions in our operations could
have a material adverse effect on our business, results of operations and financial
condition.

MANH 2014 Our software may contain undetected errors or “bugs” resulting in harm to our
reputation which could adversely impact our business, results of operations, cash
flow, and financial condition. Software products as complex as those offered by
us might contain undetected errors or failures when first introduced or when new
versions are released,. Despite testing, we cannot ensure that errors will not be
found in new products or product enhancements after commercial release,. Any
errors could cause substantial harm to our reputation, result in additional un-
planned expenses to remedy any defects, delay the introduction of new products,
result in the loss of existing or potential customers, or cause a loss in revenue.
Further, such errors could subject us to claims from our customers for significant
damages, and we cannot assure you that courts would enforce the provisions in
our customer agreements that limit our liability for damages. In turn, our busi-
ness, results of operations, cash flow, and financial condition could be materially
adversely affected.

MBCN 2017 Material breaches in security of bank systems may have a significant effect on
the Company business. We collect, process and store sensitive consumer data by
utilizing computer systems and telecommunications networks operated by both
banks and third party service providers. We have security, backup and recovery
systems in place, as well as a business continuity plan to ensure systems will not be
inoperable. We also have security to prevent unauthorized access to the system.
In addition, we require third party service providers to maintain similar controls.
However, we cannot be certain that these measures will be successful. A security
breach in the system and loss of confidential information could result in losing
customers’ confidence and thus the loss of their business as well as additional
significant costs for privacy monitoring activities.

Table 9: Examples of paragraphs missed by the dictionary approach of Florackis
et al. (2023)
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Value Weighted Portfolios

L H H-L
P1 P2 P3 P3-P1

A. Portfolios sorted by cyber risk
Average excess return 0.71 0.88∗∗ 1.24∗∗∗ 0.53∗∗

[1.83] [2.25] [3.37] [2.00]
CAPM alpha -0.58∗∗∗ -0.35 -0.07 0.51∗

[-2.75] [-1.11] [-0.35] [1.73]
FFC alpha -0.40∗ -0.23 -0.05 0.35

[-1.89] [-0.82] [-0.37] [1.38]
FF5 alpha -0.37∗ -0.27 0.01 0.38

[-1.73] [-0.97] [0.09] [1.54]
B. Characteristics
Number of firms 248.5 248.9 248.3 -
Cyber risk 0.486 0.504 0.534 -
Sharpe Ratio 0.489 0.645 0.856 0.567
Treynor Ratio 0.023 0.030 0.039 3.976
Sortino Ratio 0.735 1.071 1.463 2.349

Table 10: Average monthly excess returns and alphas (in percent), zero-risk firms
using the measure of Florackis et al. (2023)

FFC refers to the four-factor model of Carhart (1997), and FF5 refers to the five-factor model of Fama and
French (2015). Panel B shows the average number of firms in each portfolio, the average cyber risk, the
annualized Sharpe ratio, the annualized Treynor ratio, and the annualized Sortino ratio of the portfolios.
Newey-West (Newey and West, 1994) t-statistics are reported in brackets. *, **, and *** indicate significance
at the 10%, 5% and 1% levels, respectively. Period: January 2009–December 2018
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Value Weighted Portfolios

L H H-L
P1 P2 P3 P4 P5 P5-P1

A. Portfolios sorted by cyber risk
Average excess return 0.97∗∗∗ 1.05∗∗∗ 1.15∗∗∗ 1.19∗∗∗ 1.48∗∗∗ 0.51

[3.61] [4.01] [3.99] [4.10] [4.24] [1.62]
CAPM alpha -0.15 0.00 -0.01 0.07 0.33 0.48

[-0.81] [-0.02] [-0.04] [0.85] [1.54] [1.26]
FFC alpha -0.09 0.05 0.04 0.08 0.24∗ 0.33∗

[-0.98] [0.46] [0.45] [1.16] [1.82] [1.69]
FF5 alpha -0.10 -0.03 0.05 0.05 0.25∗ 0.35∗∗

[-1.40] [-0.38] [0.51] [85] [1.90] [2.10]

B. Characteristics
Number of firms 592.9 592.3 592.1 592.1 592.6 -
Cyber risk 0.482 0.496 0.507 0.521 0.565 -
Sharpe Ratio 0.702 0.820 0.829 0.883 1.029 0.571
Treynor Ratio 0.034 0.039 0.039 0.042 0.051 2.027
Sortino Ratio 1.058 1.305 1.346 1.417 1.777 2.818

Table 11: Average monthly excess returns and alphas (in percent), omitting Item
1A

During construction of the cyber risk measure, Item 1A is omitted from the 10-K statements. FFC refers to
the four-factor model of Carhart (1997), and FF5 refers to the five-factor model of Fama and French (2015).
Panel B shows the average number of firms in each portfolio, the average cyber risk, the annualized Sharpe
ratio, the annualized Treynor ratio, and the annualized Sortino ratio of the portfolios. Newey-West (Newey
and West, 1994) t-statistics are reported in brackets. *, **, and *** indicate significance at the 10%, 5%
and 1% levels, respectively. Period: January 2009–December 2022
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Appendix

Method Vector Size Window Size Min Count Sub-Sampling Negative Sampling Epoch

DBOW 300 15 5 10−5 5 20

Table A1: Baseline doc2vec parameters

The parameters of the baseline model are taken from Lau and Baldwin (2016). DBOW stands for distributed
bag-of-words.
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Score Preprocessed paragraph Ticker Tactic
0.593 currently available internet browsers allow users modify browser

settings remove cookies prevent cookies stored hard drives how-
ever third persons able penetrate network security gain access
otherwise misappropriate users personal information subject lia-
bility liability include claims misuses personal information unau-
thorized marketing purposes unauthorized use credit cards

VSTY Defense Evasion

0.590 network security data recovery measures may adequate pro-
tect computer viruses break ins similar disruptions unauthorized
tampering computer systems theft sabotage type security breach
respect proprietary confidential information electronically stored
including research clinical data material adverse impact business
operating results financial condition

LXRX Collection

0.583 domain names derive value individual ability remember names
therefore assurance domain name lose value example users be-
gin rely mechanisms domain names access online resources gov-
ernment regulation internet regulation increasing number laws
regulations pertaining internet

VSTY Credential Access

0.577 perceived actual unauthorized disclosure information collect
breach security harm business factors beyond control cause in-
terruptions operations may adversely affect reputation market-
place business financial condition results operations timely devel-
opment implementation continuous uninterrupted performance
hardware network applications internet systems including may
provided third parties important facets delivery products ser-
vices customers

MDAS Credential Access

0.571 unauthorized parties may attempt copy aspects products obtain
use information regard proprietary others may independently de-
velop otherwise acquire similar competing technologies methods
design around patents cases rely trade secret laws confidential-
ity agreements protect confidential proprietary information pro-
cesses technology

CSCD Collection

Table A2: Top scoring paragraphs from the doc2vec validation sample

The paragraphs are shown after preprocessing (as described in section 3.4.1). Tactic refers to the MITRE
tactic the paragraph is most similar to, as measured by cosine similarity. The tickers of the 10 companies in
the validation sample are CSCD, GTS, LXRX, MDAS, PBY, PZZA, UMH, VALU, VSTY and VXRT.
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Score Preprocessed paragraph Ticker Tactic
0.570 possible cookies may become subject laws limiting prohibiting

use term cookies refers information keyed specific server file path-
way directory location stored user hard drive possibly without
user knowledge used among things track demographic informa-
tion target advertising

VSTY Discovery

0.561 cannot certain advances computer capabilities discoveries field
cryptography developments result compromise breach algo-
rithms use protect content transactions website proprietary in-
formation databases anyone able circumvent security measures
misappropriate proprietary confidential customer company in-
formation cause interruptions operations

VSTY Impact

0.558 ordering delivery customers ready place order proceed shopping
cart function directly checkout page orders placed online website
via toll free telephone number customer service agents available
take orders customers access internet uncomfortable placing or-
der online

VSTY Credential Access

0.557 process allows identify catalogue embryonic stem cell clone dna
sequence trapped gene select embryonic stem cell clones dna se-
quence generation knockout mice used gene trapping technology
automated process create omnibank library frozen gene knock-
out embryonic stem cell clones identified dna sequence relational
database

LXRX Persistence

0.556 believe systematic biology driven approach technology platform
makes possible provide substantial advantages alternative ap-
proaches drug target discovery particular believe comprehensive
nature approach allows uncover potential drug targets within
context mammalian physiology might missed narrowly focused
efforts

LXRX Discovery

0.554 concerns security internet may reduce use website impede growth
significant barrier confidential communications internet need se-
curity rely ssl encryption technology designed prevent customer
credit card data transaction process current credit card practices
merchant liable fraudulent credit card transactions case transac-
tions process merchant obtain cardholder signature

VSTY Credential Access

Table A2: Top scoring paragraphs from the doc2vec validation sample (continued)
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Variable Description Source
Firm size (ln) ln(total assets [at]) Compustat
Firm Age (ln) ln(years) since the firm first appeared in Compustat Compustat
Book to market ratio Common equity [ceq] / market equity [prc*shrout] Compustat and CRSP
Tobin’s Q (Total assets - common equity + market equity) / total assets Compustat and CRSP
ROA Net income [ni] / total assets Compustat
Market Beta 5-year rolling market beta [beta] Compustat
Intangible/Assets Intangible assets [intan] / total assets Compustat
Debt/assets Total Debt / Total Assets [debt assets] WRDS Financial Ratios
ROE Net Income / Book Equity [roe] WRDS Financial Ratios
Price/Earnings Stock Price / Earnings [pe exi] WRDS Financial Ratios
Profit Margin Gross Profit / Sales [gpm] WRDS Financial Ratios
Asset Turnover Sales / Total Assets [at turn] WRDS Financial Ratios
Cash Ratio (Cash + Short-term Investments) / Current Liabilities [cash ratio] WRDS Financial Ratios
Sales/Invested Capital Sales per dollar of Invested Capital [sale invcap] WRDS Financial Ratios
Capitalization Ratio Long-term Debt / (Long-term Debt + Equity) [capital ratio] WRDS Financial Ratios
R&D/Sales R&D expenses / Sales [RD SALE] WRDS Financial Ratios
ROCE Earnings Before Interest and Taxes / average Capital Employed [roce] WRDS Financial Ratios

Table A3: Variable definitions

The names of the variables as found on CRSP and Compustat are in brackets.
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Value Weighted Portfolios

L H H-L
P1 P2 P3 P4 P5 P5-P1

A. Portfolios sorted by cyber risk
Average excess return 0.70∗∗ 0.97∗∗∗ 1.10∗∗∗ 1.23∗∗∗ 1.64∗∗∗ 0.94∗∗∗

[2.41] [3.58] [3.69] [5.76] [5.76] [3.23]
CAPM alpha -0.52∗∗∗ -0.20 -0.14 0.06 0.51∗∗ 1.03∗∗∗

[-3.11] [-1.50] [-1.07] [0.95] [2.40] [2.95]
FFC alpha -0.28∗∗∗ -0.06 0.00 -0.03 0.27∗ 0.55∗∗∗

[-3.58] [-0.73] [0.01] [-0.52] [1.91] [2.83]
FF5 alpha -0.26∗∗∗ -0.08 0.03 -0.06 0.30∗ 0.56∗∗∗

[-3.45] [-0.88] [0.36] [-0.95] [1.90] [3.01]

B. Characteristics
Number of firms 600.4 599.9 599.9 599.9 600.2 -
Cyber risk 0.490 0.504 0.515 0.529 0.570 -
Sharpe Ratio 0.511 0.752 0.807 0.965 1.272 1.157
Treynor Ratio 0.024 0.034 0.037 0.043 0.060 -0.714+

Sortino Ratio 0.723 1.137 1.257 1.571 2.393 4.319

Table A4: Average monthly excess returns and alphas (in percent) before the first
release of Florackis et al. on SSRN

FFC refers to the four-factor model from Carhart (1997) and FF5 refers to the five-factor model from Fama

and French (2015). Panel B shows the average number of firms in each portfolio, the average cyber risk, the

annualized Sharpe ratio, the annualized Treynor ratio, and the annualized Sortino ratio of the portfolios.

Newey-West t-statistics are reported in brackets. *, **, and *** indicate significance at the 10%, 5% and 1%

levels, respectively. Period: January 2009–October 2020 (before the first release of Florackis et al. (2023) on

SSRN).
+Note that the negative Treynor ratio is due to the negative correlation between the long-short and the market

portfolio in the sample, and is hence not a sign of inferior risk-return characteristics.

49



Value Weighted Portfolios

L H H-L
P1 P2 P3 P4 P5 P5-P1

A. Portfolios sorted by cyber risk
Average excess return 2.16∗∗ 1.56 1.34 1.55 0.67 -1.49∗∗

[2.18] [1.64] [0.97] [1.19] [0.44] [-2.11]
CAPM alpha 1.34∗∗∗ 0.71∗∗∗ 0.34 0.54∗∗∗ -0.40∗ -1.74∗∗∗

[4.37] [2.91] [1.15] [3.44] [-1.67] [-3.35]
FFC alpha 0.57∗ 0.19 -0.07 0.54∗∗∗ 0.17 -0.39

[1.76] [0.71] [-0.37] [3.10] [0.61] [-0.67]
FF5 alpha 0.34 -0.15 -0.15 0.65∗∗∗ 0.11 -0.23

[0.89] [-0.53] [-0.74] [3.63] [0.38] [-0.34]

B. Characteristics
Number of firms 695.5 695.0 694.9 695.0 695.2 -
Cyber risk 0.504 0.523 0.536 0.550 0.582 -
Sharpe Ratio 1.374 1.009 0.758 0.873 0.357 -1.287
Treynor Ratio 0.088 0.061 0.045 0.051 0.021 0.092
Sortino Ratio 2.798 1.830 1.280 1.665 0.529 0.640

Table A5: Average monthly excess returns and alphas (in percent) after the first
release of Florackis et al. on SSRN

FFC refers to the four-factor model from Carhart (1997) and FF5 refers to the five-factor model from Fama
and French (2015). Panel B shows the average number of firms in each portfolio, the average cyber risk, the
annualized Sharpe ratio, the annualized Treynor ratio, and the annualized Sortino ratio of the portfolios.
Newey-West t-statistics are reported in brackets. *, **, and *** indicate significance at the 10%, 5% and 1%
levels, respectively. Period: November 2020–December 2022 (after the first release of Florackis et al. (2023)
on SSRN)
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Value Weighted Portfolios

Cyber Q1 (Low) Cyber Q2 Cyber Q3 Cyber Q4 Cyber Q5 (High)

A. sorted on market beta
Beta Q1 (Low) 0.94 1.01 0.85 1.09 0.91
Beta Q2 1.04 1.03 1.23 1.25 1.55
Beta Q3 0.98 1.22 1.25 1.36 1.39
Beta Q4 1.36 1.19 1.38 1.29 1.96
Beta Q5 (High) 1.61 1.71 1.79 1.86 1.72

B. sorted on book-to-market
BM Q1 (Low) 0.90 1.09 1.22 1.28 1.54
BM Q2 1.02 1.09 1.32 1.23 1.36
BM Q3 0.99 1.04 1.23 1.18 1.51
BM Q4 1.04 1.17 1.29 1.25 1.37
BM Q5 (High) 1.87 1.77 1.73 1.64 1.71

C. sorted on size
Size Q1 (Small) 1.33 1.25 1.45 1.77 1.24
Size Q2 1.35 1.54 1.23 1.18 1.38
Size Q3 1.43 1.39 1.19 1.33 1.47
Size Q4 1.16 1.21 1.29 1.24 1.30
Size Q5 (Large) 0.86 1.00 1.14 1.25 1.52

Table A6: Average monthly excess returns (in percent)

Portfolios are first formed on market beta, book-to-market or size and then on cyber risk. Period: January
2009–December 2022
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Dependent variable: Monthly Portfolio returns

(6)

Cyber risk 0.156∗

[1.951]
HML -0.116

[-1.236]
SMB 0.200

[0.951]
RMW 0.062

[0.753]
CMA -0.173

[-0.925]

Consumer Durables -0.013
[-0.212]

Manufacturing -0.094
[-1.261]

Energy 0.059
[0.645]

Chemicals 0.062
[0.909]

Telecommunications -0.162∗∗

[-2.19]
Retail 0.139

[1.272]
Healthcare -0.003

[-0.046]
Finance -0.019

[-0.211]
Constant 1.329∗∗∗

[4.081]

R2adj 0.307
MAPE 0.636

Table A7: Fama-MacBeth regressions with industries

The betas are standardized before the second step regressions. HML and SMB refer to the book-to-market
and size factors from Fama and French (1992). CMA and RMW refer to the investment and operating
profitability factors from Fama and French (2015). The industries correspond to the Fama-French 12 industry
classification. The “Business Equipment”, “Consumer NonDurables”, “Other” and “Utilities” industries are
dropped due to high colinearity with the other industries and factors (as measured by the Variance Inflation
Factor). R2adj is the average adjusted R-squared and MAPE is the mean average pricing error. Newey-West
t-statistics are reported in brackets. *, **, and *** indicate significance at the 10%, 5% and 1% levels,
respectively.
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Dependent variable: Monthly Portfolio returns

(7)

Market -0.033
[-0.578]

Cyber risk 0.176∗∗

[2.103]
HML -0.033

[-0.293]
SMB -0.042

[-0.385]
RMW -0.086

[-1.150]
CMA 0.011

[0.076]
Constant 1.362∗∗∗

[5.015]

R2adj 0.295
MAPE 1.243

Table A8: Fama-MacBeth regressions with additional test assets

The betas are standardized before the second step regressions. HML and SMB refer to the book-to-market
and size factors from Fama and French (1992). CMA and RMW refer to the investment and operating
profitability factors from Fama and French (2015). The set of test assets is expanded with portfolios sorted
along industries. The industries correspond to the Fama-French 12 industry classification. R2adj is the
average adjusted R-squared and MAPE is the mean average pricing error. Newey-West t-statistics are
reported in brackets. *, **, and *** indicate significance at the 10%, 5% and 1% levels, respectively.
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Value Weighted Portfolios

L H H-L
P1 P2 P3 P4 P5 P5-P1

A. Portfolios sorted by the long-run cyber risk
Average excess return 0.86∗∗∗ 1.13∗∗∗ 1.14∗∗∗ 1.18∗∗∗ 1.45∗∗∗ 0.60∗

[3.00] [3.94] [3.93] [4.35] [4.23] [1.70]
CAPM alpha -0.26 -0.01 -0.03 0.11∗ 0.31 0.57

[-1.05] [-0.04] [-0.27] [1.71] [1.52] [1.33]
FFC alpha -0.17 0.01 0.05 0.10 0.23∗ 0.40∗∗

[-1.56] [0.67] [0.75] [1.24] [1.83] [2.01]
FF5 alpha -0.17∗ 0.03 -0.01 0.06 0.25∗ 0.43∗∗

[-1.80] [0.34] [-0.16] [0.93] [1.94] [2.28]

B. Characteristics
Number of firms 615.7 615.1 615.1 615.1 615.5 -
Long-run cyber risk 0.490 0.501 0.511 0.524 0.567 -
Sharpe Ratio 0.610 0.818 0.816 0.918 1.027 0.638
Treynor Ratio 0.030 0.039 0.038 0.044 0.050 2.572
Sortino Ratio 0.893 1.305 1.294 1.525 1.768 2.643

Table A9: Average monthly excess returns and alphas (in percent) using the
long-run cyber risk

The portfolios are sorted using the long-run cyber risk. FFC refers to the four-factor model from Carhart
(1997) and FF5 refers to the five-factor model from Fama and French (2015). Panel B shows the average
number of firms in each portfolio, the average long-run cyber risk, the annualized Sharpe ratio, the annualized
Treynor ratio, and the annualized Sortino ratio of the portfolios. Newey-West t-statistics are reported in
brackets. *, **, and *** indicate significance at the 10%, 5% and 1% levels, respectively. Period: January
2009-December 2022
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Value Weighted Portfolios

L H H-L
P1 P2 P3 P4 P5 P5-P1

A. Portfolios sorted by cyber risk
Average excess return 0.88∗∗∗ 1.02∗∗∗ 1.13∗∗∗ 1.22∗∗∗ 1.45∗∗∗ 0.57∗

[3.19] [3.86] [3.71] [4.73] [4.18] [1.74]
CAPM alpha -0.22 -0.07 -0.05 0.08 0.33 0.55

[-0.94] [-0.44] [-0.39] [1.38] [1.67] [1.34]
FFC alpha -0.14 -0.02 0.03 0.05 0.25∗∗ 0.39∗

[-1.18] [-0.19] [0.34] [0.81] [2.027] [1.91]
FF5 alpha -0.16 -0.08 0.03 0.06 0.26∗∗ 0.41∗∗

[-1.61] [-0.93] [0.35] [0.72] [1.97] [2.26]

B. Characteristics
Number of firms 611.9 611.3 611.3 612.3 611.7 -
Cyber risk 0.493 0.507 0.518 0.532 0.571 -
Sharpe Ratio 0.637 0.772 0.796 0.903 1.049 0.641
Treynor Ratio 0.031 0.037 0.038 0.042 0.051 4.408
Sortino Ratio 0.942 1.196 1.253 1.483 1.812 2.759

Table A10: Average monthly excess returns and alphas (in percent), cyber firms
dropped

Cybersecurity firms are dropped from the sample. FFC refers to the four-factor model from Carhart (1997),
and FF5 refers to the five-factor model from Fama and French (2015). Panel B shows the average number
of firms in each portfolio, the average cyber risk, the annualized Sharpe ratio, the annualized Treynor ratio,
and the annualized Sortino ratio of the portfolios. Newey-West t-statistics are reported in brackets. *, **,
and *** indicate significance at the 10%, 5% and 1% levels, respectively. Period: January 2009-December
2022
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Score Paragraph Ticker
Sub-technique

(Tactic)

-0.097 The increase in income from operations during 2021 was pri-
marily the result of higher net sales and production volumes and
improved margins, which benefited from positive pricing impacts
and a favorable sales mix that offset substantial inflationary ma-
terial and freight cost pressures along with higher manufactur-
ing costs. Net income per diluted share was favorably impacted
by the reversal of valuation allowances previously established
against our deferred tax assets in both the United States and
Brazil during 2021

AGCO SSH Authorized Keys
(Persistence)

-0.092 In addition, we generally would expect to be able to recover a
significant portion of the amounts paid under such guarantees
from the sale of the underlying financed farm equipment, as the
fair value of such equipment is expected to offset a substantial
portion of the amounts paid. We also guarantee indebtedness
owed to certain of our finance joint ventures if dealers or end
users default on loans.

AGCO Fast Flux DNS
(Command and Control)

-0.099 In December 2021, the Company completed the sale of its Le
Parfait brand in Europe and a previously closed plant in the
Americas. Gross proceeds on these divestitures were approxi-
mately $113 million and the related pretax gains (including costs
directly attributable to the sale) were approximately $84 million
($70 million after tax) in 2021. The pretax gains were recorded
to Other income (expense), net on the Consolidated Results of
Operations. In January 2021, the Company completed the sale
of its plant in Argentina.

OI GUI Input Capture
(Collection)

-0.088 In 2020, the Company recognized a net gain (including costs di-
rectly attributable to the sale of ANZ and subject to post-closing
adjustments) on the divestiture of approximately $275 million,
which was reported on the Other income (expense), net line in
the Consolidated Results of Operations. In addition, at closing,
certain subsidiaries of the Company entered into certain ancil-
lary agreements with Visy and the ANZ businesses in respect of
the provision of certain transitional and technical services to the
ANZ businesses.

OI Scheduled Transfer
(Exfiltration)

Table A11: Examples of negative scoring paragraphs

Examples of paragraphs with negative similarities, as measured by cosine similarity. Sub-technique refers to
the MITRE sub-technique the paragraph is most dissimilar to. The displayed score is the cosine similarity
between the paragraph and the previously mentioned sub-technique. The two companies, AGCO Corporation
(AGCO) and O-I Glass Inc (OI), were chosen because of their low cyber risk scores. The 10-Ks are the ones
filed in 2022.
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